已知數(shù)列{an}和{bn},滿足ak+1=ak+bk,k=1,2,3,….若存在正整數(shù)N,使得aN=a1成立,則稱數(shù)列{an}為N階“還原”數(shù)列.下列條件:
①|(zhì)bk|=1;
②|bk|=k;
③|bk|=2k,
可能使數(shù)列{an}為8階“還原”數(shù)列的是( 。
A、①B、①②C、②D、②③
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:由ak+1=ak+bk,得ak+1-ak=bk,然后對三個(gè)bk逐一驗(yàn)證可得只有|bk|=k時(shí)有可能得到a8=a1成立,則答案可得.
解答: 解:由ak+1=ak+bk,得
ak+1-ak=bk,則
a2-a1=b1
a3-a2=b2,
a4-a3=b3,
a5-a4=b4,
a6-a5=b5,
a7-a6=b6,
a8-a7=b7
累加得:a8-a1=b1+b2+…+b7
若|bk|=1,即bk=±1,
則b1+b2+…+b7≠0,
∴a8≠a1
若|bk|=k,即bk=±k,
則b1+b2+…+b7=1-2+3+4-5+6-7=0,
∴a8=a1成立,即|bk|=k時(shí)可能使數(shù)列{an}為8階“還原”數(shù)列;
若|bk|=2k,即bk2k
∵21+22+…+26<27,
∴b1+b2+…+b7≠0,
即|bk|=2k時(shí),不可能使數(shù)列{an}為8階“還原”數(shù)列.
故選:C.
點(diǎn)評:本題考查了數(shù)列遞推式,考查了累加法,關(guān)鍵是對題意的理解,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=bsinA,則△ABC一定是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]的函數(shù)f(x)滿足下列兩個(gè)條件:①任意的x∈[-1,1],都有f(-x)=-f(x);②任意的m,n∈[0,1],當(dāng)m≠n,都有
f(m)-f(n)
m-n
<0,則不等式f(1-3x)<f(x-1)的解集是( 。
A、[0,
1
2
B、(
1
2
,
2
3
]
C、[-1,
1
2
D、[
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,-2),
b
=(-1,3),則
a
+
b
=( 。
A、(-1,2)B、(0,1)
C、-1,2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(tanα,cosα)在第二象限,則α的終邊在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的斜率為
2
,且右焦點(diǎn)與拋物線x=
3
12
y2的焦點(diǎn)重合,則該雙曲線的離心率等于( 。
A、
2
B、2
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,x,y滿足約束條件
x≥2
x+y≤3
x-2y≤3
,若z=ax+y的最小值為1,則a=( 。
A、
1
3
B、
3
4
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.60.4,b=0.40.6,c=0.40.4,則a,b,c的大小關(guān)系是(  )
A、c>a>b
B、a>b>c
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-4x+1,試判斷f(x)的單調(diào)性,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案