【題目】已知命題,;命題:關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根.

(1)若為真命題,求實(shí)數(shù)的取值范圍;

為真命題,為假命題,求實(shí)數(shù)的取值范圍.

【答案】(1); (2).

【解析】

(1)根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)可得命題為真的等價(jià)命題為,由判別式大于零可得命題為真的等價(jià)命題,根據(jù)真,列不等式求解即可;(2)為真命題,為假命題,可得一真一假,分兩種情況討論,對(duì)于假以及真分別列不等式組,分別解不等式組,然后求并集即可求得實(shí)數(shù)的取值范圍.

(1)令,則函數(shù)上是增函數(shù),

故當(dāng)時(shí),最大值為.

當(dāng)命題為真時(shí),則,解得.

當(dāng)命題為真時(shí),則,解得.

為真,則真,

,解得

即實(shí)數(shù)的取值范圍為.

(2)若為真命題,為假命題,則一真一假,

假,則,解得;

真,則,解得.

綜上所述,實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某冷飲店的經(jīng)營(yíng)狀況,隨機(jī)記錄了該店月的月?tīng)I(yíng)業(yè)額(單位:萬(wàn)元)與月份的數(shù)據(jù),如下表:

(1)求關(guān)于的回歸直線方程;

(2)若在這樣本點(diǎn)中任取兩點(diǎn),求恰有一點(diǎn)在回歸直線上的概率.

附:回歸直線方程中,

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通常用、分別表示的三個(gè)內(nèi)角、所對(duì)的邊長(zhǎng),表示的外接圓半徑.

1)如圖,在以為圓心,半徑為的圓中,、是圓的弦,其中,,角是銳角,求弦的長(zhǎng);

2)在中,若是鈍角,求證:;

3)給定三個(gè)正實(shí)數(shù)、、,其中,問(wèn)、、滿足怎樣的關(guān)系時(shí),以、為邊長(zhǎng),為外接圓半徑的不存在、存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情況下,用、表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為進(jìn)行“陽(yáng)光運(yùn)動(dòng)一小時(shí)”活動(dòng),計(jì)劃在一塊直角三角形的空地上修建一個(gè)占地面積為(平方米)的矩形健身場(chǎng)地。如圖,點(diǎn)上,點(diǎn)上,且點(diǎn)在斜邊上,已知米,米,,設(shè)矩形健身場(chǎng)地每平方米的造價(jià)為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價(jià)為元(為正的常數(shù)).

(1)試用表示,并指出如何設(shè)計(jì)矩形的長(zhǎng)和寬,才能使得矩形的面積最大,且求出的最大值;

(2)求總造價(jià)關(guān)于面積的函數(shù),說(shuō)明如何選取,使總造價(jià)最低(不要求求出最低造價(jià)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018屆天津市耀華中學(xué)高三上學(xué)期第三次月考】已知橢圓的一個(gè)焦點(diǎn)在直線上,且離心率.

1)求該橢圓的方程;

2)若是該橢圓上不同的兩點(diǎn),且線段的中點(diǎn)在直線上,試證: 軸上存在定點(diǎn),對(duì)于所有滿足條件的,恒有;

3)在(2)的條件下, 能否為等腰直角三角形?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于的不等式的解集為的解集為.

1)試求;

2)是否存在實(shí)數(shù),使得?若存在,求的范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)處的切線與直線平行.

1)求實(shí)數(shù);

2)求函數(shù)的單調(diào)區(qū)間;

3)設(shè),當(dāng)時(shí), 恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn).

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),當(dāng)時(shí),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案