設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ<π)在x=
12
處取得最大值3,其圖象與x軸的相鄰兩個交點的距離為
π
2

(1)求f(x)的解析式;
(2)求f(x)的單調(diào)增區(qū)間;
(3)當(dāng)
π
4
≤x≤
π
2
時,求f(x)的取值范圍.
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)依題意,可知A=3,T=
ω
=π,可求得ω=2;再由f(
12
)=3,-π<φ<π,可求得φ,于是可得f(x)的解析式;
(2)利用正弦函數(shù)的單調(diào)性可得f(x)的單調(diào)增區(qū)間;
(3)當(dāng)
π
4
≤x≤
π
2
時,
π
6
≤2x-
π
3
3
,于是可求
3
2
≤3sin(2x-
π
3
)≤3,從而可得f(x)的取值范圍.
解答: 解:(1)依題意得A=3,
T
2
=
π
2
,
∴T=
ω
=π,
解得:ω=2;
又2×
12
+φ=2kπ+
π
2
(k∈Z),
∴φ=2kπ-
π
3
(k∈Z),又-π<φ<π,
∴φ=-
π
3
,
∴f(x)=3sin(2x-
π
3
);
(2)由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
,(k∈Z)
得kπ-
π
12
≤x≤kπ+
12
,(k∈Z)
∴f(x)的單調(diào)增區(qū)間為[kπ-
π
12
,kπ+
12
](k∈Z);
(3)當(dāng)
π
4
≤x≤
π
2
時,
π
6
≤2x-
π
3
3
,
3
2
≤3sin(2x-
π
3
)≤3,即f(x)的取值范圍為[
3
2
,3].
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查正弦函數(shù)的單調(diào)性及最值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人獨立破譯一種密碼,他們破譯成功的概率分別為
1
2
3
5
3
4
求:
(1)三人同時破譯,恰有一人破譯成功的概率;
(2)三人同時破譯,能破譯成功的概率;
(3)要使破譯成功的概率不小于95%,至少需要丙這樣的人多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式1≤2x<16的解集為A,不等式lg(x-1)<1解集為B.
(Ⅰ)求A∪B;
(Ⅱ)若集合M={x|a-1<x<a+1},且(A∩B)∩M=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個頂點A(-3,0),B(2,1),C(-2,3).求:
(1)BC邊上的中線AD所在的直線方程;
(2)BC邊的垂直平分線DE所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AC=BC=1,AA1=2.以AB,BC為鄰邊作平行四邊形ABCD,連接DA1和DC1
(Ⅰ)求證:A1D∥平面BCC1B1;
(Ⅱ)求直線CC1與平面DA1C1所成角的正弦值;
(Ⅲ)線段BC上是否存在點F,使平面DA1C1與平面A1C1F垂直?若存在,求出BF的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,斜三棱柱ABC-A1B1C1,已知側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A-B1B-C為30°,
(Ⅰ)證明:面AA1C1C⊥平面BB1C1C及求AB1與平面AA1C1C所成角的正切值;
(Ⅱ)在平面AA1B1B內(nèi)找一點P,使三棱錐P-BB1C為正三棱錐,并求此時
VP-AA1C1C
VP-BB1C1C
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某節(jié)能燈生產(chǎn)線上隨機抽取100件產(chǎn)品進行壽命試驗,按連續(xù)使用時間(單位:天)共分5組,得到頻率分布直方圖如圖.
(1)請根據(jù)頻率分布直方圖,估算樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(中位數(shù)精確到0.01);
(2)若將頻率視為概率,從該生產(chǎn)線所生產(chǎn)的產(chǎn)品(數(shù)量很多)中隨機抽取3個,用ξ表示連續(xù)使用壽命高于350天的產(chǎn)品件數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱(x0,f(x0))為函數(shù)y=f(x)的“拐點”.可以證明,任何三次函數(shù)都有“拐點”,任何三次函數(shù)都有對稱中心,且“拐點”就是對稱中心,請你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(-
b
3a
,f(-
b
3a
))
對稱:
②存在三次函數(shù)f′(x)=0有實數(shù)解x0,點(x0,f(x0))為函數(shù)y=f(x)的對稱中心;
③存在三次函數(shù)有兩個及兩個以上的對稱中心;
④若函數(shù)g(x)=
1
3
x3-
1
2
x2-
5
12
,則g(
1
2013
)+g(
2
2013
)+g(
3
2013
)+…+g(
2012
2013
)=-1006

其中正確命題的序號為
 
(把所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個總體分為A、B兩層,用分層抽樣的方法從總體中抽取一個容量為20的樣本,已知B層中的每個個體被抽到的概率都為
1
12
,則總體中的個體數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案