11.△ABC的頂點坐標分別為點A(-1,2),B(3,1),C(2,-3),判斷△ABC是否為直角三角形.

分析 由三角形的三個頂點的坐標分別求出三邊長,再由勾股定理的逆定理能得到這個三角形是直角三角形.

解答 解:∵|AB|2=(3+1)2+(1-2)2=17,|AC|2=(2+1)2+(-3-2)2=34,|BC|2=(2-3)2+(-3-1)2=17,
∴17+17=34,
∴|AB|2+|BC|2=|AC|2,
∴△ABC是直角三角形.

點評 本題考查三角形形狀的判斷,是基礎(chǔ)題,解題時要認真審題,注意兩點間距離公式和勾股定理的逆定理的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.給出以下四個命題:
①已知命題p:?x∈R,tanx=2;命題q:?x∈R,x2-x+1≥0,則命題p且q是真命題;
②命題“若m≤1,則x2-2x+m=0有實根”的逆否命題;
③命題“x≥1,則x2≥1”的逆命題;
④命題“面積相等的三角形全等”的否命題.
其中正確命題的序號為①②④.(把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=(x-2)lnx-ax+1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是(  )
A.(0,$\frac{1+ln3}{3}$)B.($\frac{1}{2}$,$\frac{1+ln3}{3}$]C.($\frac{1+ln3}{3}$,1)D.[$\frac{1+ln3}{3}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率$\frac{\sqrt{6}}{2}$.
(1)求雙曲線C的漸近線方程;
(2)若它的一個頂點到較近焦點的距離為$\sqrt{3}$-$\sqrt{2}$,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)a1,a2,a3,a4,求x的值,使得函數(shù)f(x)=(x-a12+(x-a22+(x-a32+(x-a42的值最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線y2=16x上有一點P,到準線的距離為20,求:
(1)點P到焦點的距離;
(2)點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一家電信公司在某大學(xué)對學(xué)生每月的手機話費進行抽樣調(diào)查,隨機抽取了100名學(xué)生,將他們的手機話費情況進行統(tǒng)計分析,繪制成頻率分布直方圖(如圖所示).如果該校有大學(xué)生10000人,請估計該校每月手機話費在[50,70)的學(xué)生人數(shù)是3100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\overrightarrow{a}$=(-2,2),$\overrightarrow$=(3,-4),$\overrightarrow{c}$=(1,5),求:
(1)2$\overrightarrow{a}$-$\overrightarrow$+3$\overrightarrow{c}$;
(2)3($\overrightarrow{a}$-$\overrightarrow$)+$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=lg(cos2x)的定義域為{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

同步練習冊答案