4.設(shè)點(diǎn)M(0,-5),N(0,5),△MNP的周長(zhǎng)為36,則△MNP的頂點(diǎn)P的軌跡方程為( 。
A.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(x≠0)B.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0)
C.$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1(y≠0)D.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(y≠0)

分析 由題意可知,△MNP的頂點(diǎn)P的軌跡是焦點(diǎn)在y軸上的橢圓(除去上下頂點(diǎn)),然后結(jié)合橢圓定義求出a,b的值,則橢圓方程可求.

解答 解:由題意可知,△MNP的頂點(diǎn)P的軌跡是焦點(diǎn)在y軸上的橢圓(除去上下頂點(diǎn)),
又c=5,2c+2a=36,
∴a=13,則b2=a2-c2=144.
∴△MNP的頂點(diǎn)P的軌跡方程為$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0).
故選:B.

點(diǎn)評(píng) 本題考查橢圓的定義,考查了橢圓標(biāo)準(zhǔn)方程的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.0∈N,$\sqrt{5}$∉Q,$\sqrt{16}$∈N*,$3\frac{1}{2}$∉ Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知多項(xiàng)式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,則a2=( 。
A.32B.42C.46D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|3≤x≤6,B={y|y=2x,2≤x<3}.
(1)分別求A∩B;(CRB)∪A
(2)已知C={x|a≤x≤a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知關(guān)于x的方程ex=ax+b(a>0,b∈R)有相等根,則a+b的最大值為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓x2+y2=4上的動(dòng)點(diǎn)P以及定點(diǎn)Q(0,6),則線段PQ的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在銳角△ABC中,已知內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大。
(2)如果b=1,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知角α的終邊在射線y=-$\sqrt{3}x({x<0})$上,那么sinα等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于x的不等式x2-(a+1)x+a<0的解集中,恰有3個(gè)整數(shù),則a的取值范圍是(  )
A.(4,5)B.(-3,-2)∪(4,5)C.(4,5]D.[-3,-2)∪(4,5]

查看答案和解析>>

同步練習(xí)冊(cè)答案