【題目】已知雙曲線的右焦點為, 是雙曲線C上的點, ,連接并延長交雙曲線C與點P,連接,若是以為頂點的等腰直角三角形,則雙曲線C的漸近線方程為( )
A. B. C. D.
【答案】B
【解析】如圖,
設F1為雙曲線左焦點,連接MF1,NF1,則:
由對稱性可知四邊形F1NF2M
為平行四邊形;
又△NF2P是以∠NF2P為頂角的等腰直角三角形,
可得∠MF2N=90°;
∴F1NF2M為矩形;
設|MF2|=x,由雙曲線的定義可得,
|MF1|=2a+x;
∴|PF2|=|NF2|=|MF1|=2a+x;
∴|PF1|=2a+|PF2|=4a+x;
在Rt△MF1F2中有:
(2a+x)2+x2=4c2①;
在Rt△MF1P中有:(2a+x)2+(2a+2x)2=(4a+x)2②;
由②解得,x=a,代回①得:9a2+a2=4c2;
∴c2=a2;∴b2=c2﹣a2=a2;
∴漸近線方程為:y=±x=±x.
故答案為:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù).
(1)當時,求函數(shù)的極值;
(2)若函數(shù),討論的單調性;
(3)若函數(shù)的圖象與軸交于兩點,且.設,其中常數(shù)、滿足條件,且.試判斷在點處的切線斜率的正負,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點M(2,1),直線平行OM,且與橢圓交于A、B兩個不同的點。
(Ⅰ)求橢圓方程;
(Ⅱ)若AOB為鈍角,求直線在軸上的截距的取值范圍;
(Ⅲ)求證直線MA、MB與軸圍成的三角形總是等腰三角形。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)= .
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內零點個數(shù)并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內的零點為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個不等實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對應的證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的三個內角A、B、C的對邊分別是a、b、c,其面積S=a2﹣(b﹣c)2 . 若a=2,則BC邊上的中線長的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的側面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com