20.已知數(shù)列{an}中,a1=2,a2n=an+1,a2n+1=n-an,則{an}的前100項和為( 。
A.1250B.1276C.1289D.1300

分析 a2n=an+1,a2n+1=n-an,可得a2n+a2n+1=1+n.又a100=a50+1=a25+2,a25=12-a12,a12=a6+1,a6=a3+1,a3=1-a1=-1,可得a100=13.于是{an}的前100項和=a1+(a2+a3)+(a4+a5)+…+(a98+a99)+a100即可得出.

解答 解:∵a2n=an+1,a2n+1=n-an,
∴a2n+a2n+1=1+n.
又a100=a50+1=a25+2,
a25=12-a12,
a12=a6+1,a6=a3+1,a3=1-a1=-1,
∴a100=13.
∴{an}的前100項和=a1+(a2+a3)+(a4+a5)+…+(a98+a99)+a100
=2+(1+1)+(2+1)+…+(49+1)+13
=15+$\frac{49×(2+50)}{2}$
=1289.
故選:C.

點評 本題考查了等差數(shù)列的通項公式及其前n項和公式、遞推關(guān)系的應(yīng)用、分組求和方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x=$\frac{π}{6}$是函數(shù)f(x)=(asinx+cosx)cosx-$\frac{1}{2}$圖象的一條對稱軸.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)作出函數(shù)f(x)在x∈[0,π]上的圖象簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)-$\sqrt{3}$sinxcosx-2sinx,x∈[$\frac{π}{6}$,π],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2-2x-3≥0},B={x|log2(x-1)<2},則(∁RA)∩B=( 。
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$.
(1)求A的值;
(2)若B=$\frac{π}{6}$,BC邊上的中線AM=2$\sqrt{21}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)y=$\sqrt{2x-{x}^{2}}$的定義域為區(qū)間A,值域為區(qū)間B,則∁AB=( 。
A.(1,2)B.(1,2]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)z=-2x+y,實數(shù)x,y滿足$\left\{\begin{array}{l}x≤2\\ x-y≥-1\\ 2x+y≥k.\end{array}\right.$若z的最大值是0,則實數(shù)k=4,z的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的通項公式為an=2n+1,令bn=$\frac{1}{n}({a_1}+{a_2}+…+{a_n})$,則數(shù)列{bn}的前10項和T10=75.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的單調(diào)區(qū)間:
(1)y=cos(2x+$\frac{π}{6}$);
(2)y=3sin($\frac{π}{3}$-$\frac{x}{2}$).

查看答案和解析>>

同步練習(xí)冊答案