【題目】給出下列命題:
①若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=32
②α,β,γ是三個(gè)不同的平面,則“γ⊥α,γ⊥β”是“α∥β”的充分條件
③已知sin=,則cos=.其中正確命題的個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
【答案】B
【解析】對(duì)于①,由(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5得a1<0,a2>0,a3<0,a4>0,a5<0,
取x=-1,得a0-a1+a2-a3+a4-a5=(1+1)5=25,再取x=0得a0=(1-0)5=1,所以|a1|+|a2|+|a3|+|a4|+|a5|=-a1+a2-a3+a4-a5=31,即①不正確;
對(duì)于②,如圖所示的正方體ABCD-A1B1C1D1中,平面ABB1A1⊥平面ABCD,平面ADD1A1⊥平面ABCD,但平面ABB1A1與平面ADD1A1不平行,所以②不正確;
對(duì)于③,因?yàn)閟in=,所以cos=cos=1-2sin2=1-2×2=,所以③正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。
(1)求證:EG⊥DF;
(2)求BE與平面EFGH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項(xiàng),則剩下三項(xiàng)構(gòu)成等差數(shù)列的概率為( )
A. B.
C.1或 D.1或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,若在區(qū)間上任取三個(gè)數(shù)、、,均存在以、、為邊長(zhǎng)的三角形,則實(shí)數(shù)的取值范圍為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知f(x)=,求f(-)的值
(2)已知-π<x<0,sin(π+x)-cosx=-.
①求sinx-cosx的值;②求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(1)將圓C和直線l的方程化為極坐標(biāo)方程;
(2)P是l上的點(diǎn),射線OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|·|OP|=|OR|2,當(dāng)點(diǎn)P在l上移動(dòng)時(shí),求點(diǎn)Q軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知垂直于以為直徑的圓所在平面,點(diǎn)在線段上,點(diǎn)為圓上一點(diǎn),且
(Ⅰ) 求證:
(Ⅱ) 求二面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com