雙曲線與橢圓有相同的焦點(diǎn),且該雙曲線
的漸近線方程為.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2) 過該雙曲線的右焦點(diǎn)作斜率不為零的直線與此雙曲線的左,右兩支分別交于點(diǎn)、,
設(shè),當(dāng)軸上的點(diǎn)滿足時(shí),求點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為,若橢圓以、為焦點(diǎn)、且離心率為.
(1)當(dāng)時(shí),求橢圓的方程;
(2)若拋物線與直線及軸所圍成的圖形的面積為,求拋物線和直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不過原點(diǎn)的直線與橢圓交于兩點(diǎn)、,且直線、、的斜率依次成等比數(shù)列,求△面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過定點(diǎn),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線與交于兩點(diǎn),以為切點(diǎn)分別作的切線,兩切線交于點(diǎn).
①求證:;②若直線與交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點(diǎn)。
(1)求證:命題“如果直線過點(diǎn)T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的離心率且點(diǎn)在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)及,點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)如圖7,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
(3)過原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com