已知直線過定點(diǎn),動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)直線交于兩點(diǎn),以為切點(diǎn)分別作的切線,兩切線交于點(diǎn).
①求證:;②若直線交于兩點(diǎn),求四邊形面積的最大值.

(1) (2) 根據(jù)直線斜率互為負(fù)倒數(shù)來得到證明,當(dāng)且僅當(dāng)時(shí),四邊形面積的取到最小值。

解析試題分析:(I)由題意知,設(shè)
化簡得     3分
(Ⅱ)①設(shè),
消去,得,顯然.
所以, 
,得,所以
所以,以為切點(diǎn)的切線的斜率為
所以,以為切點(diǎn)的切線方程為,又,
所以,以為切點(diǎn)的切線方程為……(1)
同理,以為切點(diǎn)的切線方程為……(2)
(2)-(1)并據(jù)得點(diǎn)的橫坐標(biāo)
代入(1)易得點(diǎn)的縱坐標(biāo),所以點(diǎn)的坐標(biāo)為
當(dāng)時(shí),顯然
當(dāng)時(shí),,從而   8分
②由已知,顯然直線的斜率不為0,由①知,所以,
則直線的方程為,
設(shè)設(shè),
消去,得,顯然,
所以,.



 
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/10/c/1fp0u3.png" style="vertical-align:middle;" />,所以
所以,,
當(dāng)且僅當(dāng)時(shí),四邊形面積的取到最小值    13分
考點(diǎn):直線與拋物線的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是借助于向量的模來表示得到軌跡方程,并聯(lián)立方程組來得到弦長公式,進(jìn)而得到面積的表示,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請(qǐng)判斷命題P的真假,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,線段的兩個(gè)端點(diǎn)、分別分別在軸、軸上滑動(dòng),,點(diǎn)上一點(diǎn),且,點(diǎn)隨線段的運(yùn)動(dòng)而變化.

(1)求點(diǎn)的軌跡方程;
(2)設(shè)為點(diǎn)的軌跡的左焦點(diǎn),為右焦點(diǎn),過的直線交的軌跡于兩點(diǎn),求的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M在直線l上,線段AB的中垂線與C交于P,Q兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn)M,使以PQ為直徑的圓經(jīng)過點(diǎn)F2,若存在,求出M點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線經(jīng)過拋物線的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn).

(1)若,求點(diǎn)A的坐標(biāo);
(2)若直線的傾斜角為,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l經(jīng)過點(diǎn)(0,-2),其傾斜角是60°.
(1)求直線l的方程;
(2)求直線l與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線與橢圓有相同的焦點(diǎn),且該雙曲線
的漸近線方程為
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2) 過該雙曲線的右焦點(diǎn)作斜率不為零的直線與此雙曲線的左,右兩支分別交于點(diǎn),
設(shè),當(dāng)軸上的點(diǎn)滿足時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某同學(xué)用《幾何畫板》研究拋物線的性質(zhì):打開《幾何畫板》軟件,繪制某拋物線,在拋物線上任意畫一個(gè)點(diǎn),度量點(diǎn)的坐標(biāo),如圖.

(Ⅰ)拖動(dòng)點(diǎn),發(fā)現(xiàn)當(dāng)時(shí),,試求拋物線的方程;
(Ⅱ)設(shè)拋物線的頂點(diǎn)為,焦點(diǎn)為,構(gòu)造直線交拋物線于不同兩點(diǎn)、,構(gòu)造直線、分別交準(zhǔn)線于、兩點(diǎn),構(gòu)造直線、.經(jīng)觀察得:沿著拋物線,無論怎樣拖動(dòng)點(diǎn),恒有.請(qǐng)你證明這一結(jié)論.
(Ⅲ)為進(jìn)一步研究該拋物線的性質(zhì),某同學(xué)進(jìn)行了下面的嘗試:在(Ⅱ)中,把“焦點(diǎn)”改變?yōu)槠渌岸c(diǎn)”,其余條件不變,發(fā)現(xiàn)“不再平行”.是否可以適當(dāng)更改(Ⅱ)中的其它條件,使得仍有“”成立?如果可以,請(qǐng)寫出相應(yīng)的正確命題;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)滿足,寫出求作點(diǎn)、的步驟,并求出使存在的θ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案