解答:
解:∵f(x)=ln(1+x)-x+
x
2,x>-1
∴f′(x)=
-1+kx=
,
令g(x)=kx
2+(k-1)x,k≥0,x>-1
(1)當k=0時,g(x)=-x
當-1<x<0時,g(x)>0,所以f′(x)>0,函數(shù)f(x)在(-1,0)上單調遞增,
當x>0時,g(x)<0,所以f′(x)<0,函數(shù)f(x)在(0,+∞)上單調遞減,
(2)當k≠0時,g(x)=x[kx+(k-1)]
令g(x)=x[kx+(k-1)]=0,解得x=0,或x=
-1,
①當
-1<0時,即k>1時,
當
-1<-1,解得k≥0,于已知矛盾,
當
-1<x<0時,g(x)<0,所以f′(x)<0,函數(shù)f(x)在(
-1,0)上單調遞減,
當x>0時,g(x)>0,所以f′(x)>0,函數(shù)f(x)在(0,+∞)上單調遞增,
②當
-1>0時,即0<k<1時,
當0<x<
-1時,g(x)<0,所以f′(x)<0,函數(shù)f(x)在(0,
-1)上單調遞減,
當x>
-1時,g(x)>0,所以f′(x)>0,函數(shù)f(x)在(
-1,+∞)上單調遞增,
③當k=1時,g(x)≥0,所以f′(x)>0,函數(shù)f(x)在(-1,+∞)上單調遞增,