6.已知A={x|y=$\sqrt{x-a}$},B={y|y=log${\;}_{\frac{1}{2}}$x,0<x≤$\frac{1}{4}$},且A=B,則a=( 。
A.1B.2C.0D.$\frac{1}{2}$

分析 化簡(jiǎn)A,B,利用A=B,即可得出結(jié)論.

解答 解:∵A={x|y=$\sqrt{x-a}$}=[a,+∞),B={y|y=log${\;}_{\frac{1}{2}}$x,0<x≤$\frac{1}{4}$}=[2,+∞),A=B,
∴a=2,
故選:B.

點(diǎn)評(píng) 本題考查集合的化簡(jiǎn),考查集合相等關(guān)系的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)$f(x)=\frac{1}{{{2^x}+\sqrt{2}}}$,并且滿足f(1+x)+f(-x)為定值,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的方法,求f(-4)+f(-3)+…+f(0)+…+f(4)+f(5)的值為$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知直線方程y-3=$\sqrt{3}$(x-4),則這條直線的傾斜角是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若二次函數(shù)y=ax2(a>0)的圖象與不等式組$\left\{\begin{array}{l}{x-3≤0}\\{y-2≥0}\\{y≤x+1}\end{array}\right.$表示的平面區(qū)域無(wú)公共點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.($\frac{2}{9}$,2)B.($\frac{2}{9}$,$\frac{4}{9}$)C.(0,$\frac{2}{9}$)∪($\frac{4}{9}$,+∞)D.(0,$\frac{2}{9}$)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若指數(shù)函數(shù)y=(2a+1)x在R上是增函數(shù),實(shí)數(shù)a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)-$\sqrt{3}$sinxcosx-2sinx,x∈[$\frac{π}{6}$,π],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:設(shè)a,b∈R,則“a+b>4”是“a>2且b>2”的必要不充分條件;命題q:若$\overrightarrow{a}$•$\overrightarrow$<0,則$\overrightarrow{a}$,$\overrightarrow$夾角為鈍角,在命題①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$.
(1)求A的值;
(2)若B=$\frac{π}{6}$,BC邊上的中線AM=2$\sqrt{21}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.方程sin2x-acosx=0在x∈($\frac{π}{2}$,$\frac{4π}{3}$]有且僅有一解.則實(shí)數(shù)a的取值范圍是( 。
A.a≤0B.a<-$\frac{3}{2}$或a=0C.a<-$\frac{3}{2}$D.a<0

查看答案和解析>>

同步練習(xí)冊(cè)答案