【題目】已知為直角梯形,,平面,.

1)求證:平面

2)求平面與平面所成銳二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

建立空間直角坐標(biāo)系.

1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.

方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.

2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.

如圖,以為原點建立空間直角坐標(biāo)系,

可得,,.

1)證明法一:因為,,,

所以,,

所以,平面,平面,

所以平面.

證明法二:因為平面,平面,所以,又因為,即,,平面,平面,

所以平面.

2)由(1)知平面的一個法向量

設(shè)平面的法向量,

,

所以

所以平面的一個法向量為

所以,

所以平面與平面所成銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上動點與兩個定點, ,且.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中軌跡為,過點的直線所截得的線段長度為8,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否在犯錯誤的概率不超過的前提下認(rèn)為"體育迷"與性別有關(guān).

性別

非體育迷

體育迷

總計

10

55

總計

下面的臨界值表供參考:

015

010

005

025

0010

0005

0001

k

2072

2706

3841

5024

6635

7879

10828

(參考公式:,其中)

2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列期望和方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)是定義在R上的周期為2的奇函數(shù),時,的值是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知,的兩個不同的零點.

(1)證明:;

(2)當(dāng)b=0時,若對任意x>0,不等式恒成立,求a的取值范圍;

(3)求關(guān)于x的方程的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點,直線.

1)求以點A為圓心,以為半徑的圓與直線相交所得弦長;

2)設(shè)圓的半徑為1,圓心在.若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月、兩種移動支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了人,發(fā)現(xiàn)樣本中、兩種支付方式都不使用的有人,樣本中僅使用和僅使用的學(xué)生的支付金額分布情況如下:

支付金額(元)

支付方式

大于

僅使用

僅使用

1)從樣本僅使用和僅使用的學(xué)生中各隨機(jī)抽取人,以表示這人中上個月支付金額大于元的人數(shù),求的分布列和數(shù)學(xué)期望;

2)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用的學(xué)生中,隨機(jī)抽查人,發(fā)現(xiàn)他們本月的支付金額都大于.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用的學(xué)生中本月支付金額大于元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中均為實數(shù), 為自然對數(shù)的底數(shù).

(I)求函數(shù)的極值;

(II)設(shè),若對任意的,

恒成立,求實數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案