精英家教網 > 高中數學 > 題目詳情
若雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為x+3y=0,則此雙曲線的離心率為( 。
A、
3
10
10
B、
10
3
C、2
2
D、
10
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:由雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為x+3y=0,可得
b
a
=
1
3
,即可求出雙曲線的離心率.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為x+3y=0,
b
a
=
1
3
,
∴e=
a2+b2
a
=
10
3
,
故選:B.
點評:本題考查雙曲線的性質,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)=ln(x2-x-2)的單調遞減區(qū)間為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知α為銳角,cos(α+
π
6
)=
2
3
,則sinα=(  )
A、
2+
15
6
B、
2
3
+
5
6
C、
2
3
-
5
6
D、
15
-2
6

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=tanx+
1
tanx
是(  )
A、奇函數
B、偶函數
C、既是奇函數又是偶函數
D、既不是奇函數又不是偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
β
=(-2,1),向量
α
β
的夾角為180°,且|
α
|=2
5
,則
α
=( 。
A、(-4,2)
B、(4,-2)
C、(-4,-2)
D、(4,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

在[0,2π]上滿足cos(
2
-α)≥
1
2
的α取值范圍是(  )
A、[0,
π
6
]
B、[
π
6
6
]
C、[
π
6
,
3
]
D、[
6
,π]

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是一個算法的流程圖.若輸入x的值為2,則輸出y的值是( 。
A、0
B、-
3
2
C、-1
D、-
5
4

查看答案和解析>>

科目:高中數學 來源: 題型:

過曲線y=
1
3
x3
上的點P的切線l的方程為12x-3y=16,那么P點坐標可能為( 。
A、(1,-
4
3
B、(2,
8
3
C、(-1,-
28
3
D、(3,
20
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知四棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F分別是線段AB,BC的中點,
(Ⅰ)在PA上找一點G,使得EG∥平面PFD;.
(Ⅱ)若PD與平面ABCD所成角的余弦值是
2
5
5
,求二面角A-PD-F的余弦值.

查看答案和解析>>

同步練習冊答案