將三封信投入4個郵箱,不同的投法有
 
種.
考點:排列、組合及簡單計數(shù)問題
專題:
分析:利用分步計數(shù)原理,投放3封信,即可得到結(jié)果.
解答: 解:第1封信投到信箱有4種方法,第2封信投到信箱有4種方法,第3封信投到信箱有4種方法,
由分步計數(shù)原理可知共有4×4×4=64種方法.
故答案為:64.
點評:本題考查分步計數(shù)原理的應(yīng)用,考查基本知識的應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為
x=acosθ
y=bsinθ
(φ為參數(shù),a>b>0).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin(θ+
π
4
)=
2
2
m(m為非零常數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點,且與圓O相切,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax-
1
x
-a+1
(1)當(dāng)a=2時,求關(guān)于x的不等式f(x)>0的解集;
(2)當(dāng)a<0時,求關(guān)于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
x
-1在x=1處取極值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[
1
e
,e2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2=1,a3=2,若
an
an-2
=
an-3
an-1
(n∈N*,n≥4),則a5=
 
,數(shù)列{an}的前10項和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(α+
π
4
)=
3
5
,則sin(
π
4
-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5個人排成一排,要求甲、乙兩人之間至少有一人,則不同的排法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點,已知向量
OA
=(2,4),
OB
=(1,3),且
OC
OA
AC
OB
,則向量
OC
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示程序框圖所表達(dá)的算法,若輸出的x值為48,則輸入的x值為
 

查看答案和解析>>

同步練習(xí)冊答案