2.已知向量|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=-1,向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則|$\overrightarrow$|等于( 。
A.1B.3C.$\frac{3}{2}$D.$\frac{1}{2}$

分析 由已知求出$\overrightarrow{a},\overrightarrow$的數(shù)量積,利用數(shù)量積公式可求.

解答 解:因?yàn)橄蛄縷$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=-1,向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,
所以$2{\overrightarrow{a}}^{2}+3\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}=-1$,即8+3×2|$\overrightarrow$|×$(-\frac{1}{2})$=-1,解得|$\overrightarrow$|=$\frac{3}{2}$或|$\overrightarrow$|=-3(舍去);
故選C.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算;熟練運(yùn)用數(shù)量積公式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.曲線C1上任意一點(diǎn)M滿足|MF1|+|MF2|=4,其中F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)拋物線C2的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),頂點(diǎn)為原點(diǎn)O.
(1)求C1,C2的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線l滿足條件:①過C2的焦點(diǎn)F;②與C1交于不同兩點(diǎn)M,N,且滿足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y∈R,則x2(x-y)>0是x>y的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知α,β為不重合的兩個平面,直線m?α,那么“m⊥β”是“α⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知7個人排成一排照相,其中某人一定要站在中間,則不同的排法總數(shù)是( 。
A.5040B.720C.288D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=1,an+2+ancosnπ=1,記Sn是數(shù)列{an}的前n項(xiàng)和,則$\frac{{S}_{120}}{{a}_{61}}$等于(  )
A.930B.1520C.60D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果關(guān)于x的不等式(a-2)x2+2(a-2)x-4<0對一切實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2]B.(-∞,-2)C.(-2,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.函數(shù)f(x)的定義域?yàn)镽,并滿足以下條件:
①對任意的x∈R,有f(x)>0;
②對任意的x,y∈R,都有f(xy)=[f(x)]y;
③$f(\frac{1}{3})>1$.
(Ⅰ)求f(0)的值;
(Ⅱ)判斷并證明函數(shù)f(x)在R上的單調(diào)性;
(Ⅲ)解關(guān)于x的不等式:[f(x-1)](x+1)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在區(qū)間(-∞,+∞)上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.(1,6)B.[$\frac{6}{5}$,6)C.[1,$\frac{6}{5}$]D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案