求函數(shù)y=
2-cosx
sinx
在(0,π)上的最小值.
考點(diǎn):三角函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.
解答: 解:y′=f′(x)=
sin2x-(2-cosx)cosx
sin2x
=
1-2cosx
sin2x

當(dāng)x∈(0,
π
3
)
時(shí),f′(x)<0,函數(shù)f(x)在此區(qū)間上單調(diào)遞減;當(dāng)x∈(
π
3
,π)
時(shí),f′(x)>0,函數(shù)f(x)在此區(qū)間上單調(diào)遞增.
∴當(dāng)x=
π
3
時(shí),函數(shù)f(x)取得極小值即最小值,f(
π
3
)
=
2-cos
π
3
sin
π
3
=
3

∴函數(shù)y=
2-cosx
sinx
在(0,π)上的最小值為
3
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如右表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到二年級(jí)女生的概率是0.19.現(xiàn)用分層抽樣的方法在全校抽取80名學(xué)生,則應(yīng)在三年抽取的學(xué)生人數(shù)為( 。
一年級(jí) 二年級(jí) 三年級(jí)
女生 373 x y
男生 377 370 z
A、30B、25C、24D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
則z=
2x+y+2
x+1
的取值范圍是( 。
A、[
9
4
,3]
B、[
1
4
,1]
C、[1,
9
4
]
D、[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)非零向量
m
=(
3
sinωx,cosωx),
n
=(cosωx,cosωx),ω>0.
(Ⅰ)當(dāng)ω=2,x∈(0,π)時(shí),向量
m
n
共線,求x的值;
(Ⅱ)若函數(shù)f(x)=
m
n
的圖象與直線y=
1
2
的任意兩個(gè)相交鄰點(diǎn)間的距離都是
π
2
,當(dāng)f(
α
2
+
π
24
)=
1
2
+
2
6
,α∈(0,π)時(shí),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a、b、c,不等式x2cosC+4xsinC+6≥0對(duì)一切實(shí)數(shù)x恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長(zhǎng)為6時(shí),求△ABC面積的最大值,并指出面積取最大值時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(-1,1),
c
=(1,2)
(1)證明:(-
3
2
a
+
c
)∥(2
b
-
a

(2)若向量滿足(
d
-
c
)⊥(
a
+
b
),且|
d
-
c
|=
5
,求
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過O極點(diǎn)引直線交圓ρ2+r2-2rρcosθ-a2=0(r>a>0)于P,Q兩點(diǎn),在此直線上取一點(diǎn)R,使得
2
OR
=
1
OP
+
1
OQ
,求R點(diǎn)的軌跡的極坐標(biāo)方程(r,a是常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
倍,再將所得函數(shù)圖象向右平移
π
4
個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=|x-1|,解不等式f(x)+x2-1>0;
(Ⅱ)已知函數(shù)f(x)=|x+2|-|x-1|,解不等式f(x)≥5x.

查看答案和解析>>

同步練習(xí)冊(cè)答案