5.將直線y=2x+1上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的圖形的方程是y=x+1.

分析 根據(jù)圖象的伸縮變換規(guī)律可得答案.

解答 解:直線y=2x+1上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的圖形的方程是y=$\frac{1}{2}$×2x+1=x+1,
故答案為:y=x+1.

點(diǎn)評(píng) 本題考查函數(shù)圖象的變換,熟練掌握有關(guān)圖象的變換規(guī)律是解決該類題目的基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=(log4x)2-log4x+5,x∈[1,16],求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.指出由正弦曲線y=sinx經(jīng)過(guò)怎樣的步驟可以得到正弦型曲線y=$\frac{1}{3}$sin(4x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.用計(jì)算器求下列各式的值(精確到0.001):
(1)lg34.26     
(2)ln65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)f(x)=1+lgx,則f(10)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.求函數(shù)y=$\sqrt{5-|3-2x|}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.橢圓$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一點(diǎn)M到一個(gè)焦點(diǎn)的距離是5,則它到另一個(gè)焦點(diǎn)的距離是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)$({1,\frac{{\sqrt{2}}}{2}})$,離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)已知直線l1過(guò)橢圓C的右焦點(diǎn)F2交C于 M,N兩點(diǎn),點(diǎn)Q為直線l2:x=2上的點(diǎn),且F2Q⊥l1,記直線MN與直線 OQ(O為原點(diǎn))的交點(diǎn)為K,證明:MK=NK.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知,橢圓C:$\frac{{y}^{2}}{{m}^{2}}$+$\frac{{x}^{2}}{{n}^{2}}$=1(m>n>0)短軸長(zhǎng)是1,離心率e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F (-$\sqrt{3}$,0)的直線交橢圓C于點(diǎn)M,N,G($\sqrt{3}$,0),求△GMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案