6.橢圓$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一點(diǎn)M到一個焦點(diǎn)的距離是5,則它到另一個焦點(diǎn)的距離是7.

分析 求得橢圓的a=6,設(shè)橢圓的兩個焦點(diǎn)為F,F(xiàn)',由橢圓的定義可得|PF|+|PF'|=2a=12,計(jì)算即可得到所求距離.

解答 解:橢圓$\frac{x^2}{36}$+$\frac{y^2}{16}$=1的a=6,
設(shè)橢圓的兩個焦點(diǎn)為F,F(xiàn)',
由橢圓的定義可得|PF|+|PF'|=2a=12,
可令|PF|=5,
即有|PF'|=12-|PF|=12-5=7.
故答案為:7.

點(diǎn)評 本題考查橢圓的定義和方程,主要考查橢圓的定義的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{3}$]時,k+tan(2x-$\frac{π}{3}$)的值總大于0,求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.log1000.1=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將直線y=2x+1上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,得到的圖形的方程是y=x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),左、右焦點(diǎn)分別為F1、F2,且兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2+1的取值范圍為( 。
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.F是橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的左焦點(diǎn),P是橢圓上的動點(diǎn),A(1,1)為定點(diǎn),則|PA|+|PF|的最小值是(  )
A.9-$\sqrt{2}$B.3+$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l:y=x+m與橢圓$C:\frac{x^2}{8}+\frac{y^2}{4}=1$有公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn)分別為A1,A2,且|A1A2|=4$\sqrt{3}$,該橢圓的離心率為$\frac{{\sqrt{6}}}{3}$,以M(-3,2)為圓心,r為半徑的圓與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)若A,B兩點(diǎn)關(guān)于原點(diǎn)對稱,求圓M的方程;
(3)若點(diǎn)A的坐標(biāo)為(0,2),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知A={x|x2+5x-6=0},B={x|mx+1=0},且A∩B=B,求m的值.

查看答案和解析>>

同步練習(xí)冊答案