若A、B是橢圓
x2
4
+y2=1上兩點,O為坐標原點,OH⊥AB于點H,又OA與OB斜率分別為k1,k2,且滿足k1•k2=-
3
4

(1)求點H的軌跡方程
(2)求△OAB面積的最大值.
考點:直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)設H(x0,y0),直線AB的方程為:y-y0=-
x0
y0
(x-x0)
,又AB:y=kx+m.從而k=-
x0
y0
,m=
x02+y02
y0
,y=kx+m代入x2+4y2-4=0中,得:(1+4k2)x2+8kmx+4m2-4=0,由此利用根的判別式、韋達定理結(jié)合已知條件能求出點H軌跡方程.
(2)|x1-x2|=
4
16k2+1-m2
4k2+1
,|AB|=
1+k2
|x1-x2|
,O到AB的距離d=
|m|
1+k2
,由此能求出在對稱軸
1
t
=
16
2×28
=
2
7
時,S△OAB取最大值SOAB=
11
7
14
解答: 解:(1)設H(x0,y0),OH⊥AB,A(x1,y1),B(x2,y2),
直線AB的方程為:y-y0=-
x0
y0
(x-x0)
,
又AB:y=kx+m.∴k=-
x0
y0
,m=
x02+y02
y0
,y≠0,
y=kx+m代入x2+4y2-4=0中,得:
(1+4k2)x2+8kmx+4m2-4=0,
△=4a2b2(k2a2+b2-m2)=16(4k2+1-m2),
y1y2+
3
4
x1x2=0
,
∴(kx1+m)(kx2+m)+
3
4
x1x2
=0,
∴(k 2+
3
4
)x1x2+km(x1+x2)+m2=0,
由韋達定定理代入上式,得:
3m2-4(
3
4
+k2)+m2=0
,
m2=
1
4
(4k2+3)=k2+
3
4
,
(
x02+y02
y0
)2=(
x0
y0
)2
+
3
4
,y0≠0,
(x02+y02)2=x02+
3
4
y02
,y0≠0,
又k=-
x0
y0
不存在時,即在y0=0時,
k1k2=-
3
4
知:設kOA=k1=
3
2
,
kOB=k2=-
3
2
,此時直線AB:x=±1,H點(±1,0)可取,
∴點H軌跡方程為(x2+y2)2=x2+
3
4
y2
,去掉點(0,0).
(2)|x1-x2|=
4
16k2+1-m2
4k2+1
,|AB|=
1+k2
|x1-x2|
,
O到AB的距離d=
|m|
1+k2
,
S△OAB=
1
2
•|AB|•d=
1
2
|x1-x2|•|m|

=2
k2+
3
4
(16k2+1)-(k2+
3
4
)
4k2+1

(
S△OAB
2
)2=
(k2+
3
4
)(15k2+
1
4
)
(4k2+1)2
,令4k2+1=t≥1,
(
S△OAB
2
)2=
1
16
(-
28
t2
+
16
t
+15)

在對稱軸
1
t
=
16
2×28
=
2
7
時,S△OAB取最大值,
最大值為SOAB=
11
7
14
,此時k=±
10
4
點評:本題考查點的軌跡方程的求法.考查三角形面積最大值的求法,解題時要認真審題,注意橢圓弦長公式的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+lnx,其中實數(shù)a為常數(shù).
(Ⅰ)當a=-l時,確定f(x)的單調(diào)區(qū)間:
(Ⅱ)若f(x)在區(qū)間(0,e](e為自然對數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當a=-1時,證明|f(x)|>
lnx
x
+
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A是定點,邊BC在定直線l上滑動,|BC|=4,BC邊上的高為3,求△ABC的外心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,角φ,2x的終邊分別與單位圓(以原點O為圓心)交于A、B兩點,函數(shù)f(x)=
OA
OB
,若f(x)≤f(
π
6
)對任意x∈R恒成立
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的最小正周期,對稱軸方程與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1+x)2eax(a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若存在實數(shù)a<0,使得f(x)≤kx+k對任意的x∈[-1,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在邊長為a的正方形ABCD中,E、F分別為邊BC、CD中點,設
AE
=
α
,
AF
=
β

(1)試用
α
β
表示向量
AB
、
AD
;
(2)求向量
α
、
β
夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個棱錐的三視圖如圖1所示,正視圖和側(cè)視圖都是腰長為1的等腰直角三角形,俯視圖是邊長為1的正方形.
(Ⅰ)用圖2虛線圍成的圖形作為該棱錐的底面畫出該棱錐的直觀圖(要求使用直尺和鉛筆,看不到的線畫成虛線,看得到的線畫成實線,圖形擺放方位與三視圖一致,不要求寫出作圖步驟);
(Ⅱ)求該棱錐的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別為PC、PD、BC的中點.
(1)求證:PA∥面EFG;
(2)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

大家知道:在平面幾何中,三角形的三條中線相交于一點,這個點叫三角形的重心,并且重心分中線之比為2:1(從頂點到中點).據(jù)此,我們拓展到空間:把空間四面體的頂點與對面三角形的重心的連線叫空間四面體的中軸線,則四條中軸線相交于一點,這點叫此四面體的重心.類比上述命題,請寫出四面體重心的一條性質(zhì):
 

查看答案和解析>>

同步練習冊答案