【題目】長沙某公司對其主推產(chǎn)品在過去5個月的月廣告投入xi(百萬元)和相應的銷售額yi(百萬元)進行了統(tǒng)計,其中i=1,2,3,4,5,對所得數(shù)據(jù)進行整理,繪制散點圖并計算出一些統(tǒng)計量如下:
68 | 10.3 | 15.8 | -192.12 | 1.602 | 0.46 | 3.56 |
其中,i=1,2,3,4,5.
(1)根據(jù)散點圖判斷,與哪一個適宜作為月銷售額關于月廣告投入xi的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結果及題中所給數(shù)據(jù),建立y關于x的回歸方程,并據(jù)此估計月廣告投入200萬元時的月銷售額.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某學校擬建一塊五邊形區(qū)域的“讀書角”,三角形區(qū)域ABE為書籍擺放區(qū),沿著AB、AE處擺放折線形書架(書架寬度不計),四邊形區(qū)域為BCDE為閱讀區(qū),若∠BAE=60°,∠BCD=∠CDE=120°,DE=3BC=3CD=m.
(1)求兩區(qū)域邊界BE的長度;
(2)若區(qū)域ABE為銳角三角形,求書架總長度AB+AE的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),x∈(b﹣3,2b)是奇函數(shù),
(1)求a,b的值;
(2)若f(x)是區(qū)間(b﹣3,2b)上的減函數(shù)且f(m﹣1)+f(2m+1)>0,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關系式可以近似的表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出廠價為40萬元,那么當年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩圓C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.
(1)求證:圓C1和圓C2相交;
(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求的解析式;
(2)若恒成立,則稱為的一個上界函數(shù),當(1)中的為函數(shù)的一個上界函數(shù)時,求的取值范圍;
(3)當時,對(1)中的,討論在區(qū)間上極值點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱中, , , ,點是線段上的動點.
(1)當點是的中點時,求證: 平面;
(2)線段上是否存在點,使得平面平面?若存在,試求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】體育測試成績分為四個等級:優(yōu)、良、中、不及格.某班50名學生參加測試結果如下:
等級 | 優(yōu)(86~100分) | 良(75~85分) | 中(60~74分) | 不及格(1~59分) |
人數(shù) | 5 | 21 | 22 | 2 |
(1)估計該班學生體育測試的平均成績;
(2)從該班任意抽取1名學生,求這名學生的測試成績?yōu)椤皟?yōu)”或“良”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com