分析 利用組合數(shù)階乘形式的公式得到kCnk=nCn-1k-1,將等式變成(Cn0+Cn1+Cn2+Cn3+…+Cnn)+n(Cn-10+Cn-11+Cn-12+Cn-13+…+Cn-1n-1),再利用二項(xiàng)式系數(shù)的和即可求解
解答 解:∵kCnk=nCn-1k-1,
∴${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=(Cn0+Cn1+Cn2+Cn3+…+Cnn)+n(Cn-10+Cn-11+Cn-12+Cn-13+…+Cn-1n-1)
=2n+n•2n-1,
即 ${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1 成立.
點(diǎn)評(píng) 本題考查組合數(shù)的公式性質(zhì):kCkn=nCk-1n-1;考查二項(xiàng)式系數(shù)和公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$$\sqrt{3}$ | B. | $\frac{3}{2}$$\sqrt{2}$ | C. | 3 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com