已知函數(shù)f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x)(n∈N*)則f2014′(0)=( 。
A、2013B、2014
C、2015D、2016
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),計(jì)算導(dǎo)數(shù)的規(guī)律性,即可得到結(jié)論.
解答: 解:∵f0(x)=xex,
∴f1(x)=f0′(x)=xex+ex
f2(x)=f1′(x)=xex+2ex,
f3(x)=f2′(x)=xex+3ex,

當(dāng)n=2015時(shí),f2015(x)=f2014′(x)=xex+2015ex,
此時(shí)f2014′(0)=2015e0=2015,
故選:C
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,根據(jù)導(dǎo)數(shù)的公式,得到導(dǎo)數(shù)的規(guī)律是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若將一個(gè)標(biāo)有1,2,3,4,5,6六個(gè)數(shù)字的正方體玩具拋擲五次,則其中不少于四次出現(xiàn)偶數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:x∈R,且當(dāng)m-
1
3
<x≤m+
2
3
(m∈Z)時(shí),φ(x)=m;令函數(shù)f(x)=|x-φ(x)|,有以下三個(gè)命題:
①f(x)是最小正周期為1的周期函數(shù);
②f(x)的值域?yàn)閇0,1];
③f(x)在(k,k+
2
3
]上是增函數(shù)(k∈Z)
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,1+cosA=
b+c
c
,則三角形的形狀為(  )
A、直角三角形
B、等腰三角形或直角三角形
C、正三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)α為第二象限角時(shí),
|sinα|
sinα
-
cosα
|cosα|
的值是( 。
A、1B、0C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,A=30°,C=135°,則邊c=( 。
A、1
B、
2
C、2
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+2)2+y2=36,圓A內(nèi)一定點(diǎn)B(2,0),圓P過B點(diǎn)且與圓A內(nèi)切,則圓心P的軌跡為( 。
A、圓B、橢圓
C、直線D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若m>0,則關(guān)于x的方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為(  )
A、若關(guān)于x的方程x2+x-m=0未找到引用源.有實(shí)數(shù)根,則m≤0
B、若m≤0,則關(guān)于x的方程x2+x-m=0沒有實(shí)數(shù)根
C、若關(guān)于x的方程x2+x-m=0沒有實(shí)數(shù)根,則m≤0
D、若m>0,則關(guān)于x的方程x2+x-m=0沒有實(shí)數(shù)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=2,c=4,B=60°,則b等于(  )
A、2
3
B、12
C、2
7
D、28

查看答案和解析>>

同步練習(xí)冊(cè)答案