【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

由導(dǎo)函數(shù)為偶函數(shù),得出,由,得出,將問題轉(zhuǎn)化為當(dāng)直線與函數(shù)在區(qū)間上的圖像有兩個(gè)交點(diǎn)時(shí),求實(shí)數(shù)的取值范圍,然后作出函數(shù)在區(qū)間上的圖象,利用數(shù)形結(jié)合思想求出實(shí)數(shù)的取值范圍。

,,

導(dǎo)函數(shù)的對稱軸為直線,由于該函數(shù)為偶函數(shù),則,

,令,即,得.

問題轉(zhuǎn)化為當(dāng)直線與函數(shù)在區(qū)間上的圖像有兩個(gè)交點(diǎn)時(shí),求實(shí)數(shù)的取值范圍。

,令,得,列表如下:

極大值

所以,函數(shù)處取得極大值,亦即最大值,,

,,顯然,,如下圖所示:

結(jié)合圖象可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)在區(qū)間上有兩個(gè)交點(diǎn),因此,實(shí)數(shù)的取值范圍是。

故選:B。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出兩個(gè)條件:①,②,從中選出一個(gè)條件補(bǔ)充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個(gè)都選,則按第一個(gè)解答計(jì)分)在中,分別為內(nèi)角所對的邊( ).

1)求;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 是拋物線的焦點(diǎn), 是拋物線上的任意一點(diǎn),當(dāng)位于第一象限內(nèi)時(shí), 外接圓的圓心到拋物線準(zhǔn)線的距離為.

(1)求拋物線的方程;

(2)過的直線交拋物線兩點(diǎn),且,點(diǎn)軸上一點(diǎn),且,求點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為 ,直線與曲線相交于兩點(diǎn),直線過定點(diǎn)且傾斜角為交曲線兩點(diǎn).

(1)把曲線化成直角坐標(biāo)方程,并求的值;

(2)若成等比數(shù)列,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知asinA+B)=csin.

1)求A

2)求sinBsinC的取值范圍;

3)若△ABC的面積為,周長為8,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,,GAB的中點(diǎn),.

1)求證:平面CDEF;

2)求平面ACD與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方體中,底面ABCD的長AB=4,寬BC=4,高=3,點(diǎn)M,N分別是BC,的中點(diǎn),點(diǎn)P在上底面中,點(diǎn)Q上,若,則PQ長度的最小值是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案