10.已知函數(shù)f(x)在其定義域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),當(dāng)x>1時(shí),f(x)>0;
(1)求f(8)的值;
(2)討論函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性;
(3)解不等式f(x)+f(x-2)≤3.

分析 (1)題意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f[x(x-2)]<f(8),
(2)利用函數(shù)單調(diào)性的定義即可證明f(x)在定義域上是增函數(shù);
(3)由f(x)的定義域?yàn)椋?,+∞),且在其上為增函數(shù),將不等式進(jìn)行轉(zhuǎn)化即可解得答案.

解答 解:(1)∵f(xy)=f(x)+f(y),f(2)=1,
∴f(2×2)=f(2)+f(2)=2,
∴f(8)=f(2×4)=f(2)+f(4)=3,
(2)當(dāng)x=y=1時(shí),f(1)=f(1)+f(1),
則f(1)=0,
f(x)在(0,+∞)上是增函數(shù)
設(shè)x1<x2,則
∵f(x1)<f(x2),∴f(x1)-f(x2)<0,
任取x1,x2∈(0,+∞),且x1<x2,
則$\frac{{x}_{2}}{{x}_{1}}$>1,則f($\frac{{x}_{2}}{{x}_{1}}$)>0,
又f(x•y)=f(x)+f(y),
∴f(x1)+f($\frac{{x}_{2}}{{x}_{1}}$)=f(x2),
則f(x2)-f(x1)=f($\frac{{x}_{2}}{{x}_{1}}$)>0,
∴f(x2)>f(x1),
∴f(x)在定義域內(nèi)是增函數(shù).
(3)由f(x)+f(x-2)≤3,
∴f(x(x-2))≤f(8)
∵函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),
∴$\left\{\begin{array}{l}{x>0}\\{x-2>0}\\{x(x-2)≤8}\end{array}\right.$
解得,2<x≤4.
所以不等式f(x)+f(x-2)≤3的解集為{x|2<x≤4}.

點(diǎn)評(píng) 本題主要考查抽象函數(shù)的求值,利用賦值法是解決抽象函數(shù)的基本方法,利用函數(shù)的單調(diào)性的應(yīng)用是解決本題的關(guān)鍵,考查學(xué)生的運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.命題“若?p則q”是真命題,則p是?q的( 。l件.
A.充分B.充分非必要C.必要D.必要非充分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.對(duì)于集合A,B,定義A-B={x|x∈A且∉B},A⊙B=(A-B)∪(B-A),設(shè)集合M={1,2,3,4,5,6,},N={4,5,6,7,8,9,10},則M⊙N={1,2,3,7,8,9,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=$\frac{ln(x-1)}{\sqrt{2-x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)B.(-1,2)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\sqrt{2x+3}$+$\frac{1}{x}$的定義域是( 。
A.{x|x≥-$\frac{3}{2}$}B.{x|x≥-$\frac{3}{2}$且x≠0}C.{x|x≤$\frac{3}{2}$}D.{x|x≤$\frac{3}{2}$且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若數(shù)列{an}滿足:a1=2,an+m=am•an(m,n∈N+),則數(shù)列{an}的通項(xiàng)公式an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow{OA},\overrightarrow{OB}$滿足$\overrightarrow{|{OA}|}=\overrightarrow{|{OB}|}=1,\overrightarrow{OA}⊥\overrightarrow{OB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}({λ,μ∈R})$,若M為AB的中點(diǎn),并且$|{\overrightarrow{MC}}|=1$,則λ+μ的最大值是( 。
A.$1-\sqrt{3}$B.$1+\sqrt{2}$C.$\sqrt{5}$D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù),e為自然對(duì)數(shù)的底數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx在區(qū)間[-1,1]上是減函數(shù).
(1)求實(shí)數(shù)a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求實(shí)數(shù)t的取值范圍;
(3)討論關(guān)于x的方程$\frac{lnx}{f(x)}={x^2}-2ex+m$的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列命題中的真命題是(  )
A.a>b>0是1a<1b的充要條件
B.若a+b+c=0,則a>b>c是ac<0的充分而不必要條件
C.ac2>bc2是a>b的必要而不充分條件
D.a>b且c>d是a-c>b-d的必要不充分條件

查看答案和解析>>

同步練習(xí)冊(cè)答案