為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在某城市的某高中的學(xué)生中隨機(jī)地抽取300名學(xué)生,得到下表:
喜歡數(shù)學(xué)課程 不喜歡數(shù)學(xué)課程 合計
37 85 122
35 143 178
合計 72 228 300
求K2
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:直接利用公式,即可得出結(jié)論.
解答: 解:由公式K2=
300×(37×143-35×85)2
122×178×72×228
≈4.514.
點(diǎn)評:本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查學(xué)生的計算能力,正確運(yùn)用公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3|
(1)解不等式f(x)<
x+1
2

(2)若f(x)-f(x+2)≤a對一切實(shí)數(shù)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一點(diǎn).
(Ⅰ)若AD=3OD,求證:CD∥平面PBO;
(Ⅱ)若PD=AB=BC=1,求二面角C-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校對手工社、攝影社兩個社團(tuán)招新報名的情況進(jìn)行調(diào)查,得到如下的列聯(lián)表:
手工社 攝影社 總計
女生 6
男生 42
總計 30 60
(1)請完整上表中所空缺的五個數(shù)字
(2)已知報名攝影社的6名女生中甲乙丙三人來自于同一個班級,其他再無任意兩人同班情況.現(xiàn)從此6人中隨機(jī)抽取2名女生參加某項(xiàng)活動,則被選到兩人同班的概率是多少?
(3)能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為學(xué)生對這兩個社團(tuán)的選擇與“性別”有關(guān)系?
注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.25 0.15 0.10 0.05 0.025
k0 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},a1=2,an=2an-1+2n(n≥2)
(1)求證:{
an
2n
}為等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn;
(3)若bn=
2n-1
an
,求數(shù)列{bn}中的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-ax-2a2<0},B={y|0<y≤3},B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.已知
cosA-2cosC
cosB
=
2c-a
b

(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,△ABC的周長為10,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
C
x
17
-
C
x
16
=
C
2x+2
16
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=
1
2
+
1
2x-1
(x≠0)是奇函數(shù);
③函數(shù)f(x)=2x-x2有兩個零點(diǎn);
④函數(shù)f(x)的圖象向右平移一個單位長度,所得圖象與y=ex關(guān)于y軸對稱,則f(x)=e-x-1
其中正確結(jié)論的序號是
 
.(填寫你認(rèn)為正確的所有結(jié)論序號)

查看答案和解析>>

同步練習(xí)冊答案