【題目】如圖1,四邊形ABCD為矩形,BC=2ABEAD的中點(diǎn),將ABE、DCE分別沿BE、CE折起得圖2,使得平面平面BCE,平面平面BCE.

1)求證:平面平面DCE

2)若F為線段BC的中點(diǎn),求直線FA與平面ADE所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)證明平面ABE,平面平面DCE即得證;

(2)以點(diǎn)E為坐標(biāo)原點(diǎn),EB,EC所在的直線分別為軸,軸建立空間直角坐標(biāo)系,設(shè),利用向量法求直線FA與平面ADE所成角的正弦值得解.

1)證明:在圖1中,BC=2AB,且EAB的中點(diǎn),

,同理.

所以

又平面平面BCE,平面平面

所以平面ABE,又平面,

所以平面平面DCE.

(2)

如圖,以點(diǎn)E為坐標(biāo)原點(diǎn),EB,EC所在的直線分別為軸,軸建立空間直角坐標(biāo)系,設(shè),

.

向量,設(shè)平面ADE的法向量為

,得,令,

得平面ADE的一個(gè)法向量為,

,

設(shè)直線FA與平面ADE所成角為,

所以直線FA與平面ADE所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求曲線的公切線方程:

2)若有兩個(gè)極值點(diǎn),且,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計(jì)入考生總成績時(shí),將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個(gè)選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,政府相關(guān)部門引導(dǎo)鄉(xiāng)村發(fā)展旅游的同時(shí),鼓勵(lì)農(nóng)戶建設(shè)溫室大棚種植高品質(zhì)農(nóng)作物.為了解某農(nóng)作物的大棚種植面積對種植管理成本的影響,甲,乙兩同學(xué)一起收集6家農(nóng)戶的數(shù)據(jù),進(jìn)行回歸分折,得到兩個(gè)回歸摸型:模型①:,模型②: ,對以上兩個(gè)回歸方程進(jìn)行殘差分析,得到下表:

種植面積()

2

3

4

5

7

9

每畝種植管理成本(百元)

25

24

21

22

16

14

模型①

估計(jì)值

25.27

23.62

21.97

17.02

13.72

殘差

-0.27

0.38

-0.97

-1.02

0.28

模型②

26.84

20.17

18.83

17.31

16.46

-1.84

0.83

3.17

-1.31

-2.46

1)將以上表格補(bǔ)充完整,并根據(jù)殘差平方和判斷哪個(gè)模型擬合效果更好;

2)視殘差的絕對值超過1.5的數(shù)據(jù)視為異常數(shù)據(jù),針對(1)中擬合效果較好的模型,剔除異常數(shù)據(jù)后,重新求回歸方程.

附:,;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,討論關(guān)于x的方程在區(qū)間上實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,我國老年人口比例不斷上升,造成日趨嚴(yán)峻的人口老齡化問題.20191012日,北京市老齡辦、市老齡協(xié)會聯(lián)合北京師范大學(xué)中國公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報(bào)告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為勞動(dòng)年齡,具備勞動(dòng)力,60歲及以上年齡為老年人,據(jù)統(tǒng)計(jì),2018年底北京市每2.4名勞動(dòng)力撫養(yǎng)1名老年人.

(Ⅰ)請根據(jù)上述圖表計(jì)算北京市2018年戶籍總?cè)丝跀?shù)和北京市2018年的勞動(dòng)力數(shù);(保留兩位小數(shù))

(Ⅱ)從2014年起,北京市老齡人口與年份呈線性關(guān)系,比照2018年戶籍老年人人口年齡構(gòu)成,預(yù)計(jì)到2020年年底,北京市90以上老人達(dá)到多少人?(精確到1人)

(附:對于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘法估計(jì)分別為:.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個(gè).問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,平面平面ABC.

1)求證:平面平面;

2)若,求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案