【題目】命題p:“x>e,a﹣lnx<0”為真命題的一個(gè)充分不必要條件是( )
A.a≤1
B.a<1
C.a≥1
D.a>1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有限集合S中元素的個(gè)數(shù)記做card(S),設(shè)A,B都為有限集合,給出下列命題:
①A∩B=的充要條件是card(A∪B)=card(A)+card(B)
②AB的必要不充分條件是card(A)≤card(B)+1
③AB的充分不必要條件是card(A)≤card(B)﹣1
④A=B的充要條件是card(A)=card(B)
其中,真命題有( )
A.①②③
B.①②
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是偶函數(shù),x∈R,當(dāng)x>0時(shí),f(x)為增函數(shù),若x1<0,x2>0,且|x1|<|x2|,則( )
A.f(﹣x1)>f(﹣x2)
B.f(﹣x1)<f(﹣x2)
C.﹣f(x1)>f(﹣x2)
D.﹣f(x1)<f(﹣x2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的單調(diào)遞增函數(shù),則下列四個(gè)命題:
①若f(x0)>x0 , 則f[f(x0)]>x0;
②若f[f(x0)]>x0 , 則f(x0)>x0;
③若f(x)是奇函數(shù),則f[f(x)]也是奇函數(shù);
④若f(x)是奇函數(shù),則f(x1)+f(x2)=0x1+x2=0,其中正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)A(2,1)做曲線f(x)=x3﹣3x的切線,最多有( )
A.3條
B.2條
C.1條
D.0條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地實(shí)行高考改革,考生除參加語(yǔ)文,數(shù)學(xué),外語(yǔ)統(tǒng)一考試外,還需從物理,化學(xué),生物,政治,歷史,地理六科中選考三科,要求物理,化學(xué),生物三科至少選一科,政治,歷史,地理三科至少選一科,則考生共有多少種選考方法( )
A.6
B.12
C.18
D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)關(guān)于自然數(shù)n的命題,如果驗(yàn)證當(dāng)n=1時(shí)命題成立,并在假設(shè)當(dāng)n=k(k≥1且k∈N*)時(shí)命題成立的基礎(chǔ)上,證明了當(dāng)n=k+2時(shí)命題成立,那么綜合上述,對(duì)于( )
A.一切正整數(shù)命題成立
B.一切正奇數(shù)命題成立
C.一切正偶數(shù)命題成立
D.以上都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a﹣3)x的導(dǎo)函數(shù)為f′(x),且f′(x)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為( )
A.y=3x+1
B.y=﹣3x
C.y=﹣3x+1
D.y=3x﹣3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com