A. | (-∞,$\frac{2}{3}$] | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{2}{3}$] | D. | ($\frac{1}{2}$,1) |
分析 由p且q為真命題,故p和q均為真命題,我們可根據(jù)函數(shù)的性質(zhì),分別計算出p為真命題時,參數(shù)a的取值范圍及分別計算出q為真命題時,參數(shù)a的取值范圍,求其交集即可.
解答 解:命題p:關(guān)于x的函數(shù)y=x2-3ax+4在[1,+∞)上是增函數(shù),即 $\frac{3a}{2}$≤1,a≤$\frac{2}{3}$.
命題q:關(guān)于x的函數(shù)y=(2a-1)x在R上為減函數(shù),即 0<2a-1<1,$\frac{1}{2}$<a<1,
若p且q為真命題,則有a≤$\frac{2}{3}$,且 $\frac{1}{2}$<a<1,
∴$\frac{1}{2}$<a≤$\frac{2}{3}$,
即a的取值范圍是($\frac{1}{2}$,$\frac{2}{3}$],
故選:C.
點評 本題主要考查指數(shù)函數(shù)的單調(diào)性和特殊點,二次函數(shù)的性質(zhì),復(fù)合命題的真假,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
感染 | 未感染 | 總計 | |
服用 | 10 | 40 | 50 |
未服用 | 20 | 30 | 50 |
總計 | 30 | 70 | 100 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.76 | 3.841 | 5.024 |
A. | 在犯錯誤的概率不超5%過的前提下,認(rèn)為“小動物是否被感染與有沒有服用疫苗有關(guān)” | |
B. | 在犯錯誤的概率不超5%過的前提下,認(rèn)為“小動物是否被感染與有沒有服用疫苗無關(guān)” | |
C. | 有97.5%的把握認(rèn)為“小動物是否被感染與有沒有服用疫苗有關(guān)” | |
D. | 有97.5%的把握認(rèn)為“小動物是否被感染與有沒有服用疫苗無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<0} | B. | {x|-3<x<-1} | C. | {x|x<-1} | D. | {x|-1≤x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | logab•logbc•logca=1(a,b,c均為不等于1的正數(shù)) | |
B. | 若xlog34=1,則${4^x}+{4^{-x}}=\frac{10}{3}$ | |
C. | 函數(shù)f(x)=lnx滿足f(a+b)=f(a)•f(b)(a,b>0) | |
D. | 函數(shù)f(x)=lnx滿足f(a•b)=f(a)+f(b)(a,b>0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com