某辦公室共有6人,組織出門旅行,旅行車上的6個(gè)座位如圖所示,其中甲、乙兩人的關(guān)系較為親密,要求在同一排且相鄰,則不同的安排方法有
 
種.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:計(jì)算題,排列組合
分析:分類討論:甲、乙兩人在后排,甲、乙兩人在中間一排,利用分類計(jì)數(shù)原理可得結(jié)論.
解答: 解:分類討論:甲、乙兩人在后排,可得
A
2
2
A
4
4
=48種;
甲、乙兩人在中間一排,有2種情況,然后甲和乙全排列,有
A
2
2
種,剩下4個(gè)人全排列有
A
4
4
種,則有2
A
2
2
A
4
4
=96種.
∴不同的安排方法有48+96=144種.
故答案為:144.
點(diǎn)評(píng):本題考查分類計(jì)數(shù)原理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓O的直徑AB=5,C是圓上一點(diǎn),過(guò)點(diǎn)A的圓O切線交BC的延長(zhǎng)線于點(diǎn)D,且AD=
20
3
,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)m(m-1)+(m2-3m+2)i是純虛數(shù)(其中i為虛數(shù)單位),則m=( 。
A、0或1B、1C、0D、1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚﹙a>0且a≠1﹚.
①求函數(shù)f﹙x﹚+g﹙x﹚的定義域;
②判斷函數(shù)f﹙x﹚+g﹙x﹚的奇偶性并說(shuō)明理由;
③求使f﹙x﹚-g(2x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:當(dāng)x∈R時(shí),任意f(x)都可以寫成一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,且對(duì)任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(Ⅰ)若{bn}的首項(xiàng)為4,公比為2,求數(shù)列{an+bn}的前n項(xiàng)和Sn
(Ⅱ)若an=4n+4,試探究:數(shù)列{bn}中是否存在某一項(xiàng),它可以表示為該數(shù)列中其它r(r∈N,r≥2)項(xiàng)的和?若存在,請(qǐng)求出該項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C1以雙曲線C2
x2
4
-
y2
16
=1的實(shí)軸為短軸、虛軸為長(zhǎng)軸,且與拋物線C3:y2=12x交于A,B兩點(diǎn).
(Ⅰ)求橢圓C1的方程及線段AB的長(zhǎng);
(Ⅱ)在C1與C3圖象的公共區(qū)域內(nèi),是否存在一點(diǎn)P(x0,y0),使得C1的弦EF與C3的弦MN相互垂直平分于點(diǎn)P?若存在,求點(diǎn)P坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-y2=2;
(1)若直線n的斜率為2,直線n與雙曲線相交于A、B兩點(diǎn),線段AB的中點(diǎn)為P,求點(diǎn)P的坐標(biāo)(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過(guò)雙曲線的左焦點(diǎn)F1,作傾斜角為α的直線m交雙曲線于M、N兩點(diǎn),期中α∈(
π
4
,
4
),F(xiàn)2是雙曲線的右焦點(diǎn),求△F2MN的面積S關(guān)于傾斜角α的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x的焦點(diǎn)到雙曲線
x2
4
-y2
=1的漸近線的距離是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案