一個工廠有若干車間,現(xiàn)采用分層抽樣的方法從全廠某天的2000件產(chǎn)品中抽取一個容量為200的樣本進行質(zhì)量檢查.已知某車間這一天生產(chǎn)250件產(chǎn)品,則從該車間抽取的產(chǎn)品件數(shù)為
 
考點:分層抽樣方法
專題:概率與統(tǒng)計
分析:由題設(shè)條件知,求分層抽樣時某車間被抽到的樣本數(shù),由于分層抽樣是等比例抽樣,故有
某車間被抽的產(chǎn)品數(shù)
某車間生產(chǎn)的產(chǎn)品數(shù)
=
樣本總數(shù)
產(chǎn)品總數(shù)
,由此比例關(guān)系計算出某車間被抽的產(chǎn)品數(shù).
解答: 解:由題意有
某車間被抽的產(chǎn)品數(shù)
某車間生產(chǎn)的產(chǎn)品數(shù)
=
樣本總數(shù)
產(chǎn)品總數(shù)
,
令該車間被抽的產(chǎn)品數(shù)為x
則有
2
250
=
200
2000

解之得x=25.
故答案為:25
點評:本題考查分層抽樣方法,熟記公式是解題的關(guān)鍵,本題的難點是理解分層抽樣是一個等比例抽樣,記憶公式是重點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的中心在坐標(biāo)原點,兩個焦點分別為F1(-2,0),F(xiàn)2(2,0),點A(2,3)在橢圓C1上,過點A的直線L與拋物線C2:x2=4y交于不同兩點B,C,拋物線C2在點B,C處的切線分別為l1,l2,且l1與l2交于點P.
(1)求橢圓C1的方程;
(2)是否存在滿足(|
PF1
|-|
AF1
|)+(|
PF2
|-|
AF2
|)=0的點P?若存在,指出這樣的點P有幾個,并求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-3<x<6,x∈R},B={x|x2-5x-6<0,x∈R}.求:
(1)A∪B;
(2)(∁UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
,(其中m為整數(shù)),則m叫作離實數(shù)x最近的整數(shù),記作{x},即{x}=m,在此基礎(chǔ)上,給出下列關(guān)于函數(shù)f(x)=|{x}-x|的命題:
①函數(shù)f(x)的定義域是R,值域是[-
1
2
1
2
];
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③函數(shù)y=f(x)的圖象關(guān)于原點對稱;
④函數(shù)y=f(x)在[-
1
2
1
2
]上是增函數(shù);
其中說法正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:存在T∈R,T≠0,對定義域內(nèi)的任意x,f(x+T)=f(x)+f(T)恒成立,則稱f(x)為T函數(shù).現(xiàn)給出下列函數(shù):
y=
1
x
; 
②y=2x;
③y=1nx;
④y=sinx;
⑤y=x2
其中為T函數(shù)的序號是
 
.(把你認為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x,x≤1
-x,x>1
,若f(-x)=2,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3-2|x|,g(x)=x2-2x,F(xiàn)(x)=
g(x),當(dāng)f(x)≥g(x)時
f(x),當(dāng)f(x)<g(x)時
則F(x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log
1
2
(2-log2x)的值域是(-∞,0),則f(x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線m,n與平面α,β,若m∥α,n∥β且α∥β,則直線m,n的位置關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊答案