9.設(shè)定義在R上的函數(shù)y=f(x)滿足f(x)•f(x+2)=12,且f(2015)=2,則f(1)=( 。
A.12B.6C.3D.2

分析 由已知得f(x+2)•f(x+4)=12,從而f(x)為周期函數(shù),周期為4,由此利用f(2015)=2,能求出f(1).

解答 解:∵定義在R上的函數(shù)y=f(x)滿足f(x)•f(x+2)=12,且f(2015)=2,
∴f(x+2)•f(x+4)=12,
∴f(x)=f(x+4),∴f(x)為周期函數(shù),周期為4,
∴f(2015)=f(3)=$\frac{12}{f(1)}$=2,∴f(1)=6.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)的周期性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=\sqrt{3}sin(2x-\frac{π}{6})-2{sin^2}(x-\frac{π}{12})$.
(Ⅰ)求函數(shù)f(x)的周期及增區(qū)間;
(Ⅱ)若 $-\frac{π}{12}≤x≤\frac{π}{3}$,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
①若B⊆A,求實(shí)數(shù)m的取值范圍.
②若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=$\frac{1}{{x}^{2}}$(x∈R)的值域是( 。
A.(-∞,0)B.(0,+∞)C.(-∞,0)∪(0,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.復(fù)數(shù)$\frac{5}{2-i}$的共軛復(fù)數(shù)是(  )
A.2+iB.2-iC.$\frac{10}{3}$+$\frac{5}{3}$D.$\frac{10}{3}$$-\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)a=($\frac{2}{5}$)${\;}^{\frac{2}{5}}$,b=($\frac{2}{5}$)${\;}^{\frac{3}{5}}$,c=log${\;}_{\frac{1}{4}}$3,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=x2+2x-1在閉區(qū)間[m,1]上有最大值2,最小值為-2,則m的取值范圍是(  )
A.[-1,1]B.(-∞,-1]C.[-3,-1]D.[-3,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.給出下列函數(shù):①y=x3+1②y=lg$\frac{1+x}{1-x}$③y=x$+\frac{2}{x}$④y=ln($\sqrt{{x}^{2}+1}-x$),其中奇函數(shù)的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知二次函數(shù)f(x)同時(shí)滿足下列三個(gè)條件:
(1)f(1+x)=f(1-x);
(2)f(x)的最大值為16;
(3)方程f(x)=0的兩根的平方和等于18.求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案