如圖,圓內(nèi)接三角形ABC內(nèi)角平分線 CD延長后交于圓于E,若BE=2,DE=1,則CD=
 

考點(diǎn):與圓有關(guān)的比例線段
專題:立體幾何
分析:由A、E、B、C四點(diǎn)共圓,得∠ABE=∠ACE,由CE是三角形ABC內(nèi)角平分線,得∠ACE=∠BCE,從而△ECB∽△,由此入手能求出CD.
解答: 解:∵A、E、B、C四點(diǎn)共圓,
∠ACE和∠ABE對的是同一段弧AE,∴∠ABE=∠ACE,
又CE是三角形ABC內(nèi)角平分線,∴∠ACE=∠BCE,
∴△ECB∽△DBE,∴
DE
BE
=
BE
CE
,
∴CE=
BE2
DE
=4,∴CD=CE-DE=3.
故答案為:3.
點(diǎn)評:本題考查線段長的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意四點(diǎn)共圓的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上,若其離心率是
1
2
,焦距是8,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知學(xué)生的數(shù)學(xué)成績與物理成績具有線性相關(guān)關(guān)系,某班6名學(xué)生的數(shù)學(xué)和物理成績?nèi)绫恚?table class="edittable">學(xué)生
學(xué)科ABCDEF數(shù)學(xué)成績(x)837873686373物理成績(y)756575656080(1)求物理成績y對數(shù)學(xué)成績x的線性回歸方程;
(2)當(dāng)某位學(xué)生的數(shù)學(xué)成績?yōu)?0分時(shí),預(yù)測他的物理成績.
參考公式:用最小二乘法求線性回歸方程
y
=
b
x+
a
的系數(shù)公式:
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
xi2-n
.
x2
,
a
=
.
y
-
b
.
x

參考數(shù)據(jù):832+782+732+682+632+732=32224,
83×75+78×65+73×75+68×65+63×60+73×80=30810.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-2)2+(y-3)2=1和圓外一點(diǎn) p(-1,4),求過點(diǎn)p的圓的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,2),
b
=(-3,1)則2
a
-
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
2
0
(sin
x
2
+cos
x
2
2dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P(x,y)是圓x2+(y+4)2=4上任意一點(diǎn),則
(x-1)2+(y-1)2
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若(a+b+c)(c+b-a)=3bc,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>1,-2<b<-1,則函數(shù)y=ax+b的圖象一定經(jīng)過第( 。┫笙蓿
A、一、二、三
B、一、三、四
C、二、三、四
D、一、二、四

查看答案和解析>>

同步練習(xí)冊答案