函數(shù)y=lgx2的單調(diào)減區(qū)間為( 。
A、R
B、(-∞,0),(0,+∞)
C、(-∞,0)
D、(0,+∞)
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=x2>0,求得函數(shù)y的定義域,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.再利用二次函數(shù)性質(zhì)可得t=x2 在定義域內(nèi)的減區(qū)間.
解答: 解:令t=x2>0,求得x≠0,即函數(shù)y的定義域為{x|x≠0},
故本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.
結(jié)合二次函數(shù)性質(zhì)可得t=x2 在定義域內(nèi)的減區(qū)間為(-∞,0),
故選:C.
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,定義域是R且為增函數(shù)的是( 。
A、y=x+sinx
B、y=e-x
C、y=lnx
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

《萊茵德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目(改編):把100個面包分給5個人,使每個人所得成等差數(shù)列,且使較大的三份之和的
1
3
是較小的兩份之和,則最小的1份為( 。
A、10B、15C、20D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線xcosα+ysinα+1=0,α∈(0,
π
2
)的傾斜角為( 。
A、α
B、
π
2
C、π-α
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A、B、C的對邊分別為a、b、c,若A=30°,C=105°,b=8,則a等于(  )
A、4
B、4
2
C、4
3
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以點C(1,-2)為圓心的圓與直線x+y-1=0相切.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求過圓內(nèi)一點P(2,-
5
2
)的最短弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為常數(shù),a≠0,函數(shù)f(x)=ax2+bx(x∈R),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式及值域;
(2)設(shè)集合A={x|f(x)+k>0},B={x|-2≤x≤3},若A⊆B,求實數(shù)k的取值范圍;
(3)是否存在實數(shù)m,n,使f(x)的定義域和值域分別為[m,n]和[2m,2n]?若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4,不過原點O的斜率為-
3
2
的直線l與橢圓C相交于A、B兩點,已知點P(2,1)且直線OP平分線段AB.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△OAB面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年推出一種新型家用轎車,購買時費(fèi)用為14.4萬元,每年應(yīng)交付保險費(fèi)、養(yǎng)路費(fèi)及汽車油費(fèi)共0.7萬元,
汽車維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)用均比上一年增加0.2萬元
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用,保險費(fèi),養(yǎng)路費(fèi),汽車費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式.
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

同步練習(xí)冊答案