5.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,若4Sn2-2=an2+$\frac{1}{{a}_{n}^{2}}$(n∈N*),則S2015=( 。
A.2015+$\frac{\sqrt{2015}}{2015}$B.2015-$\frac{\sqrt{2015}}{2015}$C.2015D.$\sqrt{2015}$

分析 由已知推導(dǎo)出a1=1,${a}_{n}+{a}_{n-1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$,n≥2.由此求出數(shù)列的前3項(xiàng),猜想an=$\sqrt{n}-\sqrt{n-1}$,并用數(shù)學(xué)歸法證明,從而得到${S}_{n}=\sqrt{n}$,由此能求出結(jié)果.

解答 解:∵正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,若4Sn2-2=an2+$\frac{1}{{a}_{n}^{2}}$(n∈N*),
∴$4{{a}_{1}}^{2}-2={{a}_{1}}^{2}+\frac{1}{{{a}_{1}}^{2}}$,解得a1=1,或a1=-1(舍),
$4{{S}_{n}}^{2}=({a}_{n}+\frac{1}{{a}_{n}})^{2}$,
∵an>0,∴$2{S}_{n}={a}_{n}+\frac{1}{{a}_{n}}$,①
n≥2時(shí),$2{S}_{n-1}={a}_{n-1}+\frac{1}{{a}_{n-1}}$,②
①-②,得:2an=an-an-1+$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$,n>2.
∴${a}_{n}+{a}_{n-1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}$,n≥2.
∴${a}_{2}+1=\frac{1}{{a}_{2}}-1$,整理,得:${{a}_{2}}^{2}+2{{a}_{2}}^{\;}-1=0$,
解得a2=$\sqrt{2}-1$,或${a}_{2}=-\sqrt{2}-1$(舍),
${a}_{3}+\sqrt{2}-1=\frac{1}{{a}_{3}}-\frac{1}{\sqrt{2}-1}$,整理,得${{a}_{3}}^{2}+2\sqrt{2}{a}_{3}-1=0$,解得${a}_{3}=\sqrt{3}-\sqrt{2}$,或${a}_{3}=-\sqrt{2}-\sqrt{3}$(舍),
由此猜想:an=$\sqrt{n}-\sqrt{n-1}$,
下面用數(shù)學(xué)歸法證明:
①當(dāng)n=1時(shí),${a}_{1}=\sqrt{1}-\sqrt{0}$=1,
②假設(shè)n=k時(shí),成立,即${a}_{k}=\sqrt{k}-\sqrt{k-1}$,
當(dāng)n=k+1時(shí),${a}_{k+1}+{a}_{k}=\frac{1}{{a}_{k+1}}-\frac{1}{{a}_{k}}$,
即${a}_{k+1}+\sqrt{k}-\sqrt{k-1}$=$\frac{1}{{a}_{k+1}}-\frac{1}{\sqrt{k}-\sqrt{k-1}}$,
整理,得${{a}_{k+1}}^{2}$+2$\sqrt{k}$ak+1-1=0,
解得${a}_{k+1}=\sqrt{k+1}-\sqrt{k}$或${a}_{k+1}=-\sqrt{k+1}-\sqrt{k}$,也成立.
∴${a}_{n}=\sqrt{n}-\sqrt{n-1}$,
∴${S}_{n}=1+\sqrt{2}-1+\sqrt{3}-\sqrt{2}+…+\sqrt{n}-\sqrt{n-1}$=$\sqrt{n}$.
∴S2015=$\sqrt{2015}$.
故選:D.

點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意合理猜想和數(shù)學(xué)歸納法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知A、B兩點(diǎn)關(guān)于x軸對(duì)稱,且到x軸距離之積為9t,線段AB與x軸交于點(diǎn)C(t,0),點(diǎn)O為坐標(biāo)原點(diǎn),求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.(1-x+x2)(x-$\frac{1}{x}$)6的展開(kāi)式中的常數(shù)項(xiàng)為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.等差數(shù)列{an}中,a1=-8,a10=10,其各項(xiàng)絕對(duì)值的和Tn=|a1|+|a2|+…+|an|求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=1g[2sin(2x+$\frac{π}{3}$)-1]的定義域是(  )
A.{x|kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z}B.{x|kπ+$\frac{π}{4}$<x<kπ+$\frac{11π}{12}$,k∈Z}
C.{x|kπ-$\frac{π}{6}$<x<kπ+$\frac{π}{2}$,k∈Z}D.{x|kπ<x<kπ+$\frac{π}{3}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sin2x-2cos2x+1.
(1)若x∈R,求f(x)的單調(diào)增區(qū)間;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求數(shù)列{(2n+1)2}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別是CD和PC的中點(diǎn),求證:
(1)PA⊥底面ABCD;
(2)平面BEF∥平面PAD;
(3)平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+4,x≤2}\\{1+lo{g}_{a}x,x>2}\end{array}\right.$,(a>0且a≠1)的值域是[2,+∞),則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案