【題目】如圖,在四棱錐中,底面為菱形,,的中點.

(1),求證:;

(2),且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.

【答案】1證明見解析;2.

【解析】

試題分析:1,的中點,得,又由底面為菱形,根據菱形的性質,證得,進而證得,即可證明;2為坐標原點,分別以、軸、軸、軸建立空間直角坐標系,得平面和平面的一個法向量,根據二面角大小為,利用向量的運算,即可求解求出的值.

試題解析:⑴∵,的中點,,又底面為菱形,,,又,又;

⑵∵,,

為坐標原點,分別以、軸、軸、軸建立空間直角坐標系如圖.

,,,設,

所以,平面的一個法向量是,

設平面的一個法向量為,

所以,.

由二面角大小為,可得:,解得,此時.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓)的左焦點為,且點上.

(1)求橢圓的方程;

(2)設直線同時與橢圓和拋物線相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人.現(xiàn)采用分層抽樣方法(層內采用不放回簡單隨機抽樣)從甲、乙兩組共抽取4名工人進行技術考核.

(1)求從甲、乙兩組各抽取的人數(shù);

(2)求從甲組抽取的工人中恰有1名女工人的概率;

(3)求抽取的4名工人中恰有2名男工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是坐標原點,若橢圓的離心率為,右頂點為,上頂點為的面積為

1)求橢圓的標準方程;

2)已知點,為橢圓上兩動點,若有,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十一國慶節(jié)期間,某商場舉行購物抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得3分;方案乙的中獎率為,中獎可以獲得2分;未中獎則不得分,每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,抽獎結束后憑分數(shù)兌換獎品.

(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;

(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,分別求兩種方案下小明、小紅累計得分的分布列,并指出為了累計得分較大,兩種方案下他們選擇何種方案較好,并給出理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

討論的單調區(qū)間;

若直線的圖象恒在函數(shù)圖像的上方,求的取值范圍;

若存在,,使得,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍;

(2)令,是否存在實數(shù),當是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.

(3)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直三棱柱中, , , ,點的中點.

(1)求證: 平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

1若函數(shù)處有極值,求函數(shù)的最大值;

2①是否存在實數(shù),使得關于的不等式上恒成立?若存在,求出的取值范圍;若不存在,說明理由;

②證明:不等式

查看答案和解析>>

同步練習冊答案