【題目】在平面直角坐標(biāo)系中,已知橢圓)的左焦點(diǎn)為,且點(diǎn)上.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn)同時(shí)與橢圓和拋物線(xiàn)相切,求直線(xiàn)的方程.

【答案】(1) (2)

【解析】

試題分析:(1)因?yàn)闄E圓的左焦點(diǎn)為,所以c=1,點(diǎn)P(0,1)代入橢圓,得b=1,由此求出橢圓的方程;(2)設(shè)直線(xiàn)l的為y=kx+m,由.因?yàn)橹本(xiàn)l與橢圓相切,所以.由此能求出直線(xiàn)l的方程

試題解析:(1)因?yàn)?/span>橢圓的左焦點(diǎn)為,所以,

點(diǎn)代入橢圓,得,即,所以,

所以橢圓的方程為.

(2)直線(xiàn)的斜率顯然存在,設(shè)直線(xiàn)的方程為,

,消去并整理得,

因?yàn)橹本(xiàn)與橢圓相切,所以

整理得

,消去并整理得

因?yàn)橹本(xiàn)與拋物線(xiàn)相切,所以

整理得

綜合①②,解得。

所以直線(xiàn)的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品均需用A,B兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需原料及每天原料的可用限額如表所示,如果生產(chǎn)1噸甲、乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)每天可獲得最大利潤(rùn)為

A.12萬(wàn)元 B.16萬(wàn)元

C.17萬(wàn)元 D.18萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班一次數(shù)學(xué)考試成績(jī)頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為,已知成績(jī)大于等于分的人數(shù)為人,現(xiàn)采用分層抽樣的方式抽取一個(gè)容量為的樣本.

(1)求每個(gè)分組所抽取的學(xué)生人數(shù);

(2)從數(shù)學(xué)成績(jī)?cè)?/span>的樣本中任取人,求恰有人成績(jī)?cè)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且,數(shù)列為等差數(shù)列,且, .

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程,在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù),在極坐標(biāo)系與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極軸,以軸正半軸為極軸中,圓的方程為

1求圓的圓心到直線(xiàn)的距離;

2設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,四邊形為正方形,點(diǎn)分別為線(xiàn)段上的點(diǎn),

1求證:平面平面;

2求證:當(dāng)點(diǎn)不與點(diǎn)重合時(shí),平面;

3當(dāng)時(shí),求點(diǎn)到直線(xiàn)距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元。該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用的信息如下圖。

;

引進(jìn)這種設(shè)備后,第幾年后該公司開(kāi)始獲利;

這種設(shè)備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線(xiàn)的焦點(diǎn), 若點(diǎn),

1)求的值;

2)若直線(xiàn)經(jīng)過(guò)點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線(xiàn)與直線(xiàn)的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點(diǎn).

(1),求證:;

(2),且,點(diǎn)在線(xiàn)段上,試確定點(diǎn)的位置,使二面角大小為,并求出的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案