分析 由(a2-b2)sin(A+B)=(a2+b2)sin(A-B),得(a2-b2)sinC=(a2+b2)sin(A-B),右邊展開兩角差的正弦,結(jié)合正弦定理和余弦定理得到a2=b2或a2+b2=c2,從而得出該三角形是等腰三角形或直角三角形.
解答 解:∵(a2-b2)sin(A+B)=(a2+b2)sin(A-B),
∴(a2-b2)sinC=(a2+b2)sin(A-B)=(a2+b2)(sinAcosB-cosAsinB),
∴(a2-b2)c=(a2+b2)(acosB-bcosA),
則(a2-b2)c=(a2+b2)(a•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}-b•\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$),
整理得a2=b2或a2+b2=c2,
故△ABC是等腰三角形或直角三角形.
點(diǎn)評(píng) 本題考查三角形形狀的判斷,考查了正弦定理和余弦定理的應(yīng)用,涉及三角形形狀的判斷問題,要么化角為邊,要么化邊為角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2}{9}$ | B. | $\frac{7}{18}$ | C. | $\frac{4}{9}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 7 | C. | 21 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 60° | B. | 45° | C. | 30° | D. | 以上答案都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a-c>b-d | B. | ac>bd | C. | $\frac{a}{c}>\fracsk2lmsz$ | D. | a+c>b+d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=0,b=1 | B. | a=1,b=0 | C. | a=b=0 | D. | a=b=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
P(K2>k0) | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com