17.設(shè)a∈R,若x<0時(shí),均有[(a+1)x-1](x2-ax-1)≥0,則a=-$\frac{3}{2}$.

分析 在x<0的整個(gè)區(qū)間上,我們可以將其分成兩個(gè)區(qū)間,在各自的區(qū)間內(nèi)恒正或恒負(fù),即可得到結(jié)論

解答 解:構(gòu)造函數(shù)y1=(a+1)x-1,y2=x 2-ax-1,它們都過定點(diǎn)P(0,-1).
考查函數(shù)y1=(a+1)x-1,令y=0,得M($\frac{1}{a+1}$,0),∴a<-1;
考查函數(shù)y2=x 2-ax-1,顯然過點(diǎn)M($\frac{1}{a+1}$,0),代入得:$\frac{1}{(a+1)^{2}}$-$\frac{a}{a+1}$-1=0,
解之得:a=0(舍去),a=-$\frac{3}{2}$,
故答案為:-$\frac{3}{2}$

點(diǎn)評(píng) 本題考查不等式恒成立問題,解題的關(guān)鍵是構(gòu)造函數(shù),利用函數(shù)的性質(zhì)求解.在x<0的整個(gè)區(qū)間上,我們可以將其分成兩個(gè)區(qū)間,在各自的區(qū)間內(nèi)恒正或恒負(fù),即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=x-a.
(1)若不存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=f(x)+2x|x-a|+ax-a-3,若不等式4≤h(x)≤16在x∈[1,2]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對(duì)一切實(shí)數(shù)x,函數(shù)f(x)滿足:xf(x)=2f(1-x)+1,則f(5)=$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$f(x)=\left\{\begin{array}{l}2x-3(x>0)\\{e^x}(x<0)\end{array}\right.$,則f[f(1)]=( 。
A.eB.$\frac{1}{e}$C.e2D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A、B、C為函數(shù)y=logax(0<a<1)的圖象上的三點(diǎn),它們的橫坐標(biāo)分別是t,t+2,t+4(t>1).
(1)設(shè)△ABC的面積為S,求S=f(t);
(2)求函數(shù)S=f(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓的長(zhǎng)軸長(zhǎng)為6,焦距為$4\sqrt{2}$,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=log${\;}_{\frac{1}{2}}$x在[2,4]上的最大值與最小值的差為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=3x,若實(shí)數(shù)x1,x2,…x2015滿足x1+x2+…+x2015=3,則f(x1)f(x2)…f(x2015)的值=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知關(guān)于x的不等式x2-mx-2n<0的解集為(-1,3)
(1)求不等式x2-x-m>0的解集;
(2)求不等式組$\left\{\begin{array}{l}{{x}^{2}-2nx+m≤0}\\{x-y+1≥0}\\{2x+3y≥6}\end{array}\right.$所表示的平面區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案