分析 由已知可函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),且f(x)的最小正周期為π,可得:f(-$\frac{5}{3}$π)=f(-$\frac{2}{3}$π)=f($\frac{1}{3}$π)=-f(-$\frac{1}{3}$π),進(jìn)而得到答案.
解答 解:∵函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),且f(x)的最小正周期為π,
∴f(-$\frac{5}{3}$π)=f(-$\frac{2}{3}$π)=f($\frac{1}{3}$π)=-f(-$\frac{1}{3}$π),
又∵當(dāng)x∈[-$\frac{π}{2}$,0)時(shí),f(x)=sinx.
f(-$\frac{1}{3}$π)=-$\frac{\sqrt{3}}{2}$,
∴f(-$\frac{5}{3}$π)=$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{\sqrt{3}}{2}$
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,3) | C. | [$\frac{3}{5}$,3) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,0) | C. | (1,1) | D. | (0,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com