已知數(shù)列{an}滿足a2=-
1
7
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(1)求a1的值;
(2)求證:數(shù)列{
1
an
+(-1)n}是等比數(shù)列;
(3)設(shè)cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項(xiàng)和為Tn.求證:對任意的n∈N*,Tn
2
3
考點(diǎn):數(shù)列與不等式的綜合,等比關(guān)系的確定
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用遞推式和已知即可得出;
(2)兩邊取倒數(shù),再變形和利用等比數(shù)列的定義和通項(xiàng)公式,即可得到結(jié)論.
(3)利用放縮法和等比數(shù)列的前n項(xiàng)和公式即可得出結(jié)論.
解答: (1)解:由a2=
a1
a1-2
=-
1
7
,解得a1=
1
4
 …(2分)
(2)證明:∵an=
an-1
(-1)nan-1-2

1
an
+(-1)n=-2[
1
an-1
+(-1)n-1],
1
a1
-1
=3≠0,…(6分)
∴數(shù)列{
1
an
+(-1)n}是以3為首項(xiàng),公比為-2的等比數(shù)列.…(7分)
(3)解:由(2)得
1
an
+(-1)n=3•(-2)n-1.…(8分)
1
an
=3•(-2)n-1-(-1)n
∴an=
1
3•(-2)n-1-(-1)n
,…(10分)
∴cn=ansin
(2n-1)π
2
=
1
3•(-2)n-1-(-1)n
•(-1)n-1=
1
3•2n-1+1
1
3•2n-1
.…(12分)
∴Tn
1
3
[1-(
1
2
)n]
1-
1
2
=
2
3
[1-(
1
2
)n
]<
2
3
.…(14分)
點(diǎn)評:熟練掌握遞推式的意義、取倒數(shù)法、再變形和利用等比數(shù)列的定義和通項(xiàng)公式、放縮法和等比數(shù)列的前n項(xiàng)和公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+1
+
n
(n=1,2,…,),Sn是數(shù)列{an}的前n項(xiàng)和,則Sn=(  )
A、
n+1
-1
B、
n
-1
C、
n
+1
D、
n+1
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x-a
2x2+b
為R上的奇函數(shù)(a,b是常數(shù)),且函數(shù)f(x)的圖象過點(diǎn)(1,
1
3
).
(1)求f(x)的表達(dá)式;
(2)定義正數(shù)數(shù)列{an}:a1=
1
2
,an+12=2an•f(an),設(shè)bn=
1
an2
-2,求證:數(shù)列{bn}是等比數(shù)列;
(3)設(shè)數(shù)列{
n
an2
}的前n項(xiàng)和Sn,若Sn+
1
2n-2
-m>0對一切n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果定義在[0,1]上的函數(shù)f(x)滿足:若對任意x1,x2∈[0,1],且x1≠x2,都有|f(x1)-f(x2)|<|x1-x2|成立,則稱f(x)為“M函數(shù)”.
(Ⅰ)已知函數(shù)g(x)=
1
x+2
,x∈[0,1].判斷g(x)是否為“M函數(shù)”,并說明理由;
(Ⅱ)若h(x)為“M函數(shù)”,且h(0)=h(1),求證:對任意x1,x2∈[0,1],有|h(x1)-h(x2)|<
1
2
.(提示:|a+b|≤|a|+|b|,a,b∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)為正的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:2Sn=an•(an+1);數(shù)列{bn}滿足:bn-bn-1=an-1(n≥2,n∈N*),且b1=1.
(1)求an和bn;
(2)設(shè)Tn為數(shù)列{
1
bn+2n
}的前n項(xiàng)和,若Tn≤λan+1對一切n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
3
2
n(n+1),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn滿足an=3log2bn,求數(shù)列{bn}的前n項(xiàng)和為Tn;
(3)設(shè)cn=
9
anan+1
,Rn是數(shù)列{cn}的前n項(xiàng)和,求證:
1
2
≤Rn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S3=7.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an+1(n∈N*),數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn,求證Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項(xiàng)a1>1,公比q>0的等比數(shù)列.設(shè)bn=log2an(n∈N*),且b1+b3+b5=6,b1b3b5=0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Sn,求當(dāng)
S1
1
+
S2
2
+…+
Sn
n
最大時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
c
在同一平面內(nèi),且
a
=(-1,2).
(1)若
c
=(m-1,3m),且
c
a
,求m的值;
(2)若|
a
-
b
|=3,且(
a
+2
b
)⊥(2
a
-
b
),求
a
-
b
b
的夾角.

查看答案和解析>>

同步練習(xí)冊答案