【題目】已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2) 為橢圓上任意一點,若,求的最大值和最小值.
(3)求的面積.
【答案】(1) (2) 最大值為1和最小值為(3)
【解析】試題分析:(1)由離心率及焦點坐標,易得方程;
(2)設則直線的方程為,與橢圓聯立由得的范圍,又,即可得解;
(3)設直線的方程為,與橢圓聯立,利用韋達定理得中點坐標,從而由的斜率,解得,進而得,由點到直線距離求得,利用求解即可.
試題解析:
(1)由已知得, ,
解得,又,
所以橢圓的方程為.
(2)設則直線的方程為,則.
由,得①
, 的最大值為1和最小值為.
(3)設直線的方程為,
由,得①
設的坐標分別為, , 中點為,
則, ,
因為是等腰的底邊,所以,
所以的斜率,
解得,此時方程①為,
解得, ,所以, ,
所以,此時,點到直線的距離
,所以的面積.
科目:高中數學 來源: 題型:
【題目】已知三棱錐A﹣BPC中,AP⊥PC,AC⊥BC,M為AB的中點,D為PB的中點,且△PMB為正三角形.
(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求三棱錐B﹣MDC的體積VB﹣MDC .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=0,an+1=an+2 +1
(1)求證數列{ }是等差數列,并求出an的通項公式;
(2)若bn= ,求數列的前n項的和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面是不重合的兩個面,下列命題中,所有正確命題的序號是_____.
①若, 分別是平面的法向量,則;
②若, 分別是平面, 的法向量,則;
③若是平面的法向量, 與共面,則;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司試銷一種成本單價為500元的新產品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經試銷調查,發(fā)現銷售量y(件)與銷售單價x(元)之間的關系可近似看作一次函數y=kx+b(k≠0),函數圖象如圖所示.
(1)根據圖象,求一次函數y=kx+b(k≠0)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車的推廣給消費者帶來全新消費體驗,迅速贏得廣大消費者的青睞,然而,同時也暴露出管理、停放、服務等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調查小組隨機地對不同年齡段50人進行調查,將調查情況整理如下表:
并且,年齡在和的人中持“提倡”態(tài)度的人數分別為5和3,現從這兩個年齡段中隨機抽取2人征求意見.
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,圓C的參數方程為 (θ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為 . (Ⅰ)求圓C的普通方程和直線l的直角坐標方程;
(Ⅱ)設M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ax﹣lnx,a∈R.
(1)若函數f(x)在[1,2]上是減函數,求實數a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實數a,當x∈(0,e](e是自然常數)時,函數g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com