1.頂點(diǎn)在原點(diǎn)且以雙曲線$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn)為焦點(diǎn)的拋物線方程是y2=8x.

分析 由雙曲線方程求出雙曲線的右焦點(diǎn)坐標(biāo),可得拋物線的焦點(diǎn)坐標(biāo),進(jìn)一步求出p,則拋物線方程可求.

解答 解:由$\frac{{x}^{2}}{3}$-y2=1,得a2=3,b2=1,
∴c2=a2+b2=4,則c=2.
∴雙曲線$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn),即拋物線的交點(diǎn)坐標(biāo)為(2,0),
則$\frac{p}{2}=2$,∴p=4,
∴拋物線方程是y2=8x.
故答案為:y2=8x.

點(diǎn)評(píng) 本題考查雙曲線及拋物線的簡(jiǎn)單性質(zhì),考查了拋物線的方程,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)集合M={x|1<x≤20}與非空集合N={x|2a-1≤x<3a-4},且N⊆(M∩N),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC中,點(diǎn)D在BC上,AD平分∠BAC,若$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則$\overrightarrow{AD}$=( 。
A.$\frac{2}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$B.$\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$C.$\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$D.$\frac{3}{5}\overrightarrow{a}+\frac{2}{5}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)是奇函數(shù),且定義域?yàn)椋?∞,0)∪(0,+∞).若x<0時(shí),f(x)=lg$\frac{1-x}{2}$.
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若指數(shù)函數(shù)過點(diǎn)(2,4),則它的解析式為( 。
A.y=2xB.y=(-2)xC.y=($\frac{1}{2}$)xD.y=(-$\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)對(duì)于函數(shù)f(x),g(x),已知f(6)=5,g(6)=4,f′(6)=3,g′(6)=1.如果h(x)=f(x)•g(x)-1,求h′(6)的值;
(2)直線y=$\frac{1}{2}$x+b能作為函數(shù)f(x)=sinx圖象的切線嗎?若能,求出切點(diǎn)坐標(biāo);若不能,簡(jiǎn)述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.拋物線C:y=x2在點(diǎn)P(x0,y0)處的切線l分別交x軸、y軸于不同的兩點(diǎn)A、B.
(1)如果|AB|=$\sqrt{17}$,求點(diǎn)P的坐標(biāo):
(2)圓心E在y軸上的圓與直線l相切于點(diǎn)P,當(dāng)|PE|=|PA|時(shí),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比λ;
(1)設(shè)圓C0:x2+y2=1,求過P(2,0)的直線關(guān)于圓C0的距離比λ=$\sqrt{3}$的直線方程;
(2)若圓C與y軸相切于點(diǎn)A(0,3),且直線y=x關(guān)于圓C的距離比λ=$\sqrt{2}$,求此圓C的方程;
(3)是否存在點(diǎn)P,使過P的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓C1:(x+1)2+y2=1與C2:(x-3)2+(y-3)2=4的距離比始終相等?若存在,求出相應(yīng)的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列有關(guān)平面向量分解定理的四個(gè)命題中:
①一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;
②一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;
③平面向量的基向量可能互相垂直;
④一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線性組合.
正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案