分析 由雙曲線方程求出雙曲線的右焦點(diǎn)坐標(biāo),可得拋物線的焦點(diǎn)坐標(biāo),進(jìn)一步求出p,則拋物線方程可求.
解答 解:由$\frac{{x}^{2}}{3}$-y2=1,得a2=3,b2=1,
∴c2=a2+b2=4,則c=2.
∴雙曲線$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn),即拋物線的交點(diǎn)坐標(biāo)為(2,0),
則$\frac{p}{2}=2$,∴p=4,
∴拋物線方程是y2=8x.
故答案為:y2=8x.
點(diǎn)評(píng) 本題考查雙曲線及拋物線的簡(jiǎn)單性質(zhì),考查了拋物線的方程,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$ | B. | $\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$ | C. | $\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$ | D. | $\frac{3}{5}\overrightarrow{a}+\frac{2}{5}\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x | B. | y=(-2)x | C. | y=($\frac{1}{2}$)x | D. | y=(-$\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com