函數(shù)y=xex+1的單調(diào)減區(qū)間為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)小于0,即可得到結(jié)論.
解答: 解:∵y=xex+1,
∴y′=ex+xex=(x+1)ex,
由y′=(x+1)ex<0,解得x<-1,
即函數(shù)的單調(diào)遞減區(qū)間為(-∞,-1),
故答案為:(-∞,-1)
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)區(qū)間的求解,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系時(shí)即可得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a2-b2-c2=bc,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2•ex+1,x∈[-2,1]的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,A=60°,最大邊和最小邊的長(zhǎng)是方程3x2-27x+32=0的兩實(shí)根,那么邊BC的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a=5+2
6
,b=5-2
6
,則a與b的等差中項(xiàng)是
 
,a與b的等比中項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
x3
-lnx在其定義域內(nèi)的一個(gè)區(qū)間(m-1,m+1)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-2013°的終邊在第
 
象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某初級(jí)中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法抽取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段.如果抽得號(hào)碼有下列四種情況:
①5,9,100,107,111,121,180,195,200,265;
②7,34,61,88,115,142,169,196,223,250;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A、①、③都可能為系統(tǒng)抽樣
B、②、④都可能為分層抽樣
C、②、③都可能為分層抽樣
D、①、④都可能為系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1+x)2n(n∈N*)的展開式中,系數(shù)最大的項(xiàng)是( 。
A、第
n
2
+1項(xiàng)
B、第n項(xiàng)
C、第n+1項(xiàng)
D、第n項(xiàng)與第n+1項(xiàng)

查看答案和解析>>

同步練習(xí)冊(cè)答案