【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為,bc,且b,c成等比數(shù)列,.

1)求的值;

2)若△ABC的面積為2,求△ABC的周長(zhǎng).

【答案】(1) (2)

【解析】

1)首先根據(jù)題意可知,根據(jù)正弦定理轉(zhuǎn)化為,再變形,代入求值;

2)首先根據(jù)面積求,再根據(jù)余弦定理求.

解:(1)△ABC中,∵cosB=0,∴sinB=

a,b,c成等比數(shù)列,得b2=ac,根據(jù)正弦定理得:sin2B=sinAsinC

=

=

=;

(2)ABC的面積為SABC=acsinB=b2=2,∴b=;

由余弦定理b2=a2+c22accosB=a2+c22×5×

a2+c2=b2+6=5+5=11,∴(a+c2=a2+2ac+c2=11+2×5=21

a+c=;∴△ABC的周長(zhǎng)為a+b+c=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

1)求時(shí),的單調(diào)區(qū)間;

2)若存在,使得對(duì)任意的,都有,求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽(yáng)線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽(yáng)線,四根陰線的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.

(1)求線段AB的中點(diǎn)M的軌跡C的方程;

(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|x2|ttR,gx)=|x+3|

1xR,有fxgx),求實(shí)數(shù)t的取值范圍;

2)若不等式fx≤0的解集為[1,3],正數(shù)ab滿足ab2ab2t2,求a+2b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列的公差不為0,是其前項(xiàng)和,給出下列命題:

①若,且,則都是中的最大項(xiàng);

②給定,對(duì)一切,都有;

③若,則中一定有最小項(xiàng);

④存在,使得同號(hào).

其中正確命題的個(gè)數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,ω0),且函數(shù)的兩個(gè)相鄰對(duì)稱中心之間的距離是

1)求;

2)若函數(shù)上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左頂點(diǎn)為,離心率為,過(guò)點(diǎn)的直線與橢圓交于另一點(diǎn),點(diǎn)軸上的一點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢某科技公司為提高市場(chǎng)銷售業(yè)績(jī),現(xiàn)對(duì)某產(chǎn)品在部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)促銷活動(dòng).現(xiàn)有兩種活動(dòng)方案,在每個(gè)試點(diǎn)網(wǎng)點(diǎn)僅采用一種活動(dòng)方案,經(jīng)統(tǒng)計(jì),20181月至6月期間,每件產(chǎn)品的生產(chǎn)成本為10元,方案1中每件產(chǎn)品的促銷運(yùn)作成本為5元,方案2中每件產(chǎn)品的促銷運(yùn)作成本為2元,其月利潤(rùn)的變化情況如圖①折線圖所示.

1)請(qǐng)根據(jù)圖①,從兩種活動(dòng)方案中,為該公司選擇一種較為有利的活動(dòng)方案(不必說(shuō)明理由);

2)為制定本年度該產(chǎn)品的銷售價(jià)格,現(xiàn)統(tǒng)計(jì)了8組售價(jià)xi(單位:元/件)和相應(yīng)銷量y(單位:件)(i1,2,…8)并制作散點(diǎn)圖(如圖②),觀察散點(diǎn)圖可知,可用線性回歸模型擬合yx的關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到整數(shù));

參考公式及數(shù)據(jù):40660,xiyi206630,x12968,,

3)公司策劃部選1200lnx+5000x3+1200兩個(gè)模型對(duì)銷量與售價(jià)的關(guān)系進(jìn)行擬合,現(xiàn)得到以下統(tǒng)計(jì)值(如表格所示):

x3+1200

52446.95

122.89

124650

相關(guān)指數(shù)

R

R

相關(guān)指數(shù):R21

i)試比較R12,R22的大。ńo出結(jié)果即可),并由此判斷哪個(gè)模型的擬合效果更好;

ii)根據(jù)(1)中所選的方案和(i)中所選的回歸模型,求該產(chǎn)品的售價(jià)x定為多少時(shí),總利潤(rùn)z可以達(dá)到最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案