設(shè)全集U=R,集合A={x|2x>1},B={x||x-2|≤3},則(∁UA)∩B等于( 。
A、[-1,0)
B、(0,5]
C、[-1,0]
D、[0,5]
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:分別求出A與B中不等式的解集確定出A與B,根據(jù)全集U=R求出A的補(bǔ)集,找出A補(bǔ)集與B的交集即可.
解答: 解:由A中的不等式變形得:2x>1=20,得到x>0,即A=(0,+∞),
∵全集U=R,∴∁UA=(-∞,0],
由B中的不等式變形得:-3≤x-2≤3,即-1≤x≤5,
∴B=[-1,5],
則(∁UA)∩B=[-1,0].
故選:C.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義域?yàn)镽的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x(x-2);若關(guān)于x的方程f2(x)-f(x)+t=0的方程有6個(gè)不相等的實(shí)根,求實(shí)數(shù)t的取值范圍(  )
A、(0,
1
4
B、(-∞,
1
4
C、(-2,
1
4
D、(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
1
x
1
2
的解集是(  )
A、(2,+∞)
B、[2,+∞)
C、(-∞,0)∪[2,+∞)
D、(-∞,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1-200編號(hào),并按編號(hào)順序平均分為40組(1-5號(hào),6-10號(hào),…,196-200號(hào)).若第6組抽出的號(hào)碼為28,則第8組抽出的號(hào)碼應(yīng)是a; 若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人.那么a+b等于( 。
A、46B、45C、70D、69

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線L經(jīng)過(guò)點(diǎn)A(1,2
3
),B(2,
3
),則L的傾斜角是( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2-
3
x
50=a0+a1x+a2x2+…+a50x50,其中a0,a1,a2…,a50是常數(shù),計(jì)算(a0+a2+a4+…+a502-(a1+a3+a5+…a492

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
cosx,cosx),向量
b
=(sinx,cosx),記f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[-
π
4
π
4
]
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系內(nèi),點(diǎn)A(x,y)實(shí)施變換f后,對(duì)應(yīng)點(diǎn)為A1(y,x),給出以下命題:
①圓x2+y2=r2(r≠0)上任意一點(diǎn)實(shí)施變換f后,對(duì)應(yīng)點(diǎn)的軌跡仍是圓x2+y2=r2(r≠0);
②若直線y=kx+b上每一點(diǎn)實(shí)施變換f后,對(duì)應(yīng)點(diǎn)的軌跡方程仍是y=kx+b,則k=-1;
③橢圓
x2
a2
+
y2
b2
=1(a>b>0)上每一點(diǎn)實(shí)施變換f后,對(duì)應(yīng)點(diǎn)的軌跡仍是離心率不變的橢圓;
④曲線C:y=-x2+2x-1(x>0)上每一點(diǎn)實(shí)施變換f后,對(duì)應(yīng)點(diǎn)的軌跡是曲線C1,M是曲線C上的任意一點(diǎn),N是曲線C1上的任意一點(diǎn),則|MN|的最小值為
3
2
4

以上正確命題的序號(hào)是
 
(寫出全部正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案