當0<a<1時,關(guān)于x的不等式
a(x-1)
x-2
>1的解集是( 。
A、(2,
a-2
a-1
B、(
2-a
a-1
,2)
C、(-∞,2)∪(
a-2
a-1
,+∞)
D、(-∞,
2-a
a-1
)∪(2,+∞)
考點:其他不等式的解法
專題:不等式的解法及應用
分析:要解的不等式即
(1-a)x+a-2
x-2
<0
,即[(1-a)x-(2-a)]•(x-2)<0.再根據(jù) 
2-a
1-a
>2,求得不等式的解集.
解答: 解:當0<a<1時,關(guān)于x的不等式
a(x-1)
x-2
>1即
(1-a)x+a-2
x-2
<0
,
即[(1-a)x-(2-a)]•(x-2)<0.
由于
2-a
1-a
>2,∴2<x<
2-a
1-a
,
故選:A.
點評:本題主要考查分式不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學思想,注意判斷
2-a
1-a
>2,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某單位職工共有600人,其中青年職工250人,中年職工200人,老年職工150人,現(xiàn)采取分層抽樣法抽取樣本,樣本中青年職工5人,則樣本容量是( 。
A、12B、15C、18D、25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當輸入的x值為7時,右邊的程序運行的結(jié)果等于( 。
A、6B、-6C、8D、-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(x-1)(x2+3x-10)的零點個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2-2x=0的圓心坐標和半徑分別為( 。
A、(1,0),1
B、(0,1),1
C、(-1,0),1
D、(1,0),2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b、c∈R,a<b<0,則下列不等式一定成立的是( 。
A、a2<b2
B、ac2<bc2
C、
1
a
1
b
D、
1
a-b
1
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3,則下列說話正確的是( 。
A、f(x)為奇函數(shù),且在(0,+∞)上是增函數(shù)
B、f(x)為奇函數(shù),且在(0,+∞)上是減函數(shù)
C、f(x)為偶函數(shù),且在(0,+∞)上是增函數(shù)
D、f(x)為偶函數(shù),且在(0,+∞)上是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

變量x,y滿足
x-4y+3≤0
3x+5y-25≤0
x≥1
,
①設z=
y
x
,求z的最小值;
②設z=x2+y2求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(x∈R),滿足f(0)=f(
1
2
)=0,且f(x)的最小值是-
1
8
.設數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,Sn)在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)通過bn=
Sn
n+k
構(gòu)造一個新數(shù)列{bn},是否存在非零常數(shù)k,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

同步練習冊答案