已知單位向量
a
,
b
滿足(2
a
-3
b
)•(2
a
+
b
)=3
(Ⅰ)求
a
b

(Ⅱ)求|2
a
-
b
|的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:(I)利用數(shù)量積的運(yùn)算性質(zhì)即可得出;
(II)利用數(shù)量積的性質(zhì)即可得出.
解答: 解:(I)∵單位向量
a
b
滿足(2
a
-3
b
)•(2
a
+
b
)=3,
4
a
2
-
b
2
-4
a
b
=4-1-4
a
b
=3,化為
a
b
=0.
(II)|2
a
-
b
|=
4
a
2
+
b
2
-4
a
b
=
4×1+1-0
=
5
點(diǎn)評:本題考查了數(shù)量積的運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項a1>1,公比q>0的等比數(shù)列.設(shè)bn=log2an(n∈N*),且b1+b3+b5=6,b1b3b5=0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè){bn}的前n項和為Sn,求當(dāng)
S1
1
+
S2
2
+…+
Sn
n
最大時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
,
c
在同一平面內(nèi),且
a
=(-1,2).
(1)若
c
=(m-1,3m),且
c
a
,求m的值;
(2)若|
a
-
b
|=3,且(
a
+2
b
)⊥(2
a
-
b
),求
a
-
b
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C與橢圓
x2
8
+
y2
4
=1有相同的焦點(diǎn),直線y=
3
x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}前n項和為Sn,且滿足Sn=
3
2
bn-n (n∈N*)
,若數(shù)列{an}滿足a1=1,an=bn(
1
b1
+
1
b2
+…
1
bn-1
) (n≥2,n∈N*)

(1)求b1,b2及bn
(2)證明
an+1
an+1
=
bn
bn+1
(n≥2,n∈N*)
;
(3)求證:(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)<3(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時滿足以下三個條件:①對任意的x∈[0,1],總有f(x)≥0;②f(1)=1③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x1)成立,則稱為
.
W
函數(shù),下面四個命題:
①若函數(shù)f(x)為
.
W
函數(shù),則f(0)=0;
②函數(shù)f(x)=2x-1,x∈[0,1],是
.
W
函數(shù);
.
W
函數(shù)f(x)一定不是單調(diào)函數(shù);
④若函數(shù)f(x)是
.
W
函數(shù),假設(shè)存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0則f(x0)=x0
其中真命題是:
 
.(填上所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=1,a8=64,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={x|1<x<7},A={x|2≤x≤5},B={x|3≤x≤6},則(∁UA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a>0且a≠1,函數(shù)f(x)=
ax,x<3
ax+b,x≥3
,若數(shù)列{an}滿足an=f(n)(n∈N*),且{an}是等差數(shù)列,則a=
 
,b=
 

查看答案和解析>>

同步練習(xí)冊答案