【題目】如圖,四邊形是矩形,沿對角線將折起,使得點在平面上的射影恰好落在邊上.
(1)求證:平面平面;
(2)當(dāng)時,求二面角的余弦值.
【答案】(I)見解析;(II).
【解析】試題分析:(1)先證明. 結(jié)合,得平面,又平面,
所以平面平面.
(2)以點為原點,線段所在的直線為軸,線段所在的直線為軸,建立空間直角坐標(biāo)系,用向量法求解即可.
試題解析:(1)設(shè)點在平面上的射影為點,連接
則平面,所以.
因為四邊形是矩形,所以,所以平面,
所以.
又,所以平面,而平面,
所以平面平面.
(2)方法1:在矩形中,過點作的垂線,垂足為,連結(jié).
因為平面 ,又DM∩DE=D
所以平面 ,
所以為二面角的平面角.
設(shè),則.
在中,易求出, .
在中, ,
所以.
方法2:以點為原點,線段所在的直線為軸,線段所在的直線為軸,建立空間直角坐標(biāo)系,如圖所示.
設(shè),則,所以, .
由(I)知,又,所以°,°,那么, , ,
所以,所以, .
設(shè)平面的一個法向量為,則即
取,則, ,所以.
因為平面的一個法向量為,
所以.
所以求二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大以來,國家深入推進精準(zhǔn)脫貧,加大資金投入,強化社會幫扶,為了更好的服務(wù)于人民,派調(diào)查組到某農(nóng)村去考察和指導(dǎo)工作.該地區(qū)有200戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當(dāng)?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計,若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.
(1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這200戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是邊長為2的正方形,且OA=2,M,N分別為OA,BC的中點.
(1)求證:直線MN平面OCD;
(2)求點B到平面DMN的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則( )
A. p1<p2<p3 B. p2<p1<p3
C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在區(qū)間上的極大值為8,求在區(qū)間上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍兩種顏色的單車,已知黃、藍兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場中隨機抽取5輛單車進行體驗,若每輛單車被抽取的可能性相同.
(1)求抽取的5輛單車中有2輛是藍色顏色單車的概率;
(2)在騎行體驗過程中,發(fā)現(xiàn)藍色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術(shù)部門作進一步抽樣檢測,并規(guī)定若抽到的是藍色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過()次.在抽樣結(jié)束時,已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.
方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.
方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.
(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;
(2)若某顧客獲得抽獎機會.
①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學(xué)期望;
②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進行促銷活動?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時,的極大值為;當(dāng)時,有極小值。求:
(1)的值;
(2)函數(shù)的極小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點,兩個焦點分別為.
(1)求橢圓的方程;
(2)過的直線與橢圓相交于兩點,若的內(nèi)切圓半徑為,求以為圓心且與直線相切的圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com