考點(diǎn):數(shù)列的求和,等比關(guān)系的確定
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)對(duì)an+l=2an2,兩邊取以2為底的對(duì)數(shù)得log2an+1=1+2log2an,變形為log2an+1+1=2(log2an+1),利用等比數(shù)列的通項(xiàng)公式即可得出.
(II)利用“錯(cuò)位相減法”即可得出.
解答:
解:(Ⅰ)對(duì)a
n+l=2a
n2,
兩邊取以2為底的對(duì)數(shù)得log
2a
n+1=1+2log
2a
n,
則log
2a
n+1+1=2(log
2a
n+1),
∴{1+log
2a
n}為等比數(shù)列,且log
2a
n+1=(log
2a
1+1)×2
n-1=2
n.
(Ⅱ)由(Ⅰ)得b
n=
=
.
∴S
n=
+
+…+
,
S
n=
++…+
,
兩式相減得
S
n=
+
+…+
-
=
-
,
∴S
n=2-
.
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.